Skip to main content

A toolbox for efficient global optimization

Project description

egobox

tests pytests linting DOI

Rust toolbox for Efficient Global Optimization algorithms inspired from SMT.

egobox is twofold:

  1. for end-users: a Python module, the Python binding of the optimizer named Egor and the surrogate model Gpx, mixture of Gaussian processes, written in Rust.
  2. for developers: a set of Rust libraries useful to implement bayesian optimization (EGO-like) algorithms,

The Python module

Thanks to the PyO3 project, which makes Rust well suited for building Python extensions. You can install the Python package using:

$ pip install egobox

See the tutorial notebooks for usage of the optimizer and mixture of Gaussian processes surrogate model.

The Rust libraries

egobox Rust libraries consists of the following sub-packages.

Name Version Documentation Description
doe crates.io docs sampling methods; contains LHS, FullFactorial, Random methods
gp crates.io docs gaussian process regression; contains Kriging and PLS dimension reduction
moe crates.io docs mixture of experts using GP models
ego crates.io docs efficient global optimization with basic constraints and mixed integer handling

Usage

Depending on the sub-packages you want to use, you have to add following declarations to your Cargo.toml

[dependencies]
egobox-doe = { version = "0.11.0" }
egobox-gp  = { version = "0.11.0" }
egobox-moe = { version = "0.11.0" }
egobox-ego = { version = "0.11.0" }

Features

serializable-gp

The serializable-gp feature enables the serialization of GP models using the serde crate.

persistent-moe

The persistent-moe feature enables save() and load() methods for MoE model to/from a json file using the serde crate.

Examples

Examples (in examples/ sub-packages folder) are run as follows:

$ cd doe && cargo run --example samplings --release
$ cd gp && cargo run --example kriging --release
$ cd moe && cargo run --example clustering --release
$ cd ego && cargo run --example ackley --release

BLAS/LAPACK backend (optional)

egobox relies on linfa project for methods like clustering and dimension reduction, but also try to adopt as far as possible the same coding structures.

As for linfa, the linear algebra routines used in gp, moe ad ego are provided by the pure-Rust linfa-linalg crate, the default linear algebra provider.

Otherwise, you can choose an external BLAS/LAPACK backend available through the ndarray-linalg crate. In this case, you have to specify the blas feature and a linfa BLAS/LAPACK backend feature (more information in linfa features).

Thus, for instance, to use gp with the Intel MKL BLAS/LAPACK backend, you could specify in your Cargo.toml the following features:

[dependencies]
egobox-gp = { version = "0.11.0", features = ["blas", "linfa/intel-mkl-static"] }

or you could run the gp example as follows:

$ cd gp && cargo run --example kriging --release --features blas,linfa/intel-mkl-static

Citation

DOI

If you find this project useful for your research, you may cite it as follows:

@article{
  Lafage2022, 
  author = {Rémi Lafage}, 
  title = {egobox, a Rust toolbox for efficient global optimization}, 
  journal = {Journal of Open Source Software} 
  year = {2022}, 
  doi = {10.21105/joss.04737}, 
  url = {https://doi.org/10.21105/joss.04737}, 
  publisher = {The Open Journal}, 
  volume = {7}, 
  number = {78}, 
  pages = {4737}, 
} 

Additionally, you may consider adding a star to the repository. This positive feedback improves the visibility of the project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

egobox-0.12.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

egobox-0.12.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

egobox-0.12.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

egobox-0.12.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

egobox-0.12.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

egobox-0.12.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

egobox-0.12.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

egobox-0.12.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

egobox-0.12.0-cp312-none-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

egobox-0.12.0-cp312-none-win32.whl (2.4 MB view details)

Uploaded CPython 3.12 Windows x86

egobox-0.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

egobox-0.12.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

egobox-0.12.0-cp311-none-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

egobox-0.12.0-cp311-none-win32.whl (2.4 MB view details)

Uploaded CPython 3.11 Windows x86

egobox-0.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

egobox-0.12.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

egobox-0.12.0-cp310-none-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

egobox-0.12.0-cp310-none-win32.whl (2.4 MB view details)

Uploaded CPython 3.10 Windows x86

egobox-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

egobox-0.12.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

egobox-0.12.0-cp39-none-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

egobox-0.12.0-cp39-none-win32.whl (2.4 MB view details)

Uploaded CPython 3.9 Windows x86

egobox-0.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

egobox-0.12.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

egobox-0.12.0-cp38-none-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

egobox-0.12.0-cp38-none-win32.whl (2.4 MB view details)

Uploaded CPython 3.8 Windows x86

egobox-0.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

egobox-0.12.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

egobox-0.12.0-cp37-none-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.7 Windows x86-64

egobox-0.12.0-cp37-none-win32.whl (2.4 MB view details)

Uploaded CPython 3.7 Windows x86

egobox-0.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

egobox-0.12.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

File details

Details for the file egobox-0.12.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 805f6e94d4d04b55648b35ebbf0089fd506252ad784689b8fa9fc0fd93ecb46b
MD5 d4fe8238cb176860913c73a1d1035c24
BLAKE2b-256 e7a9cabe8afd0381c1b8c00393a5749c3aec5868366ea14bce56682244472ae2

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 dcd9cf385e4d47aa4673b472bdfa1513c0a1bd90dc1c0b8a29c41717c53400db
MD5 25e41caf96bc826dba0465c5bb420e1b
BLAKE2b-256 0a8789a2d0b256d3fd880a3ae43b5708439733bd6ae6191f23cc2a0d0e25dbb4

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38dea4cd341607a19fa2199ec7b178a22f9e969582992322c342925bf83a1485
MD5 a4e393c324ad2294a13d84c38b3398bd
BLAKE2b-256 9856f723bd0c8d907a841e96e2162fa1540013221557f204e6953126e7f6f0bb

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7f272ab4ad1d87739d12506a3effed192c26e494e215023a624436bf8f1cd686
MD5 7d6b0a609dd53e94163e627156e86a4c
BLAKE2b-256 fcc4f9828a570b8adef498c632c4c75af41e3ed40ad50fb7c49990ec4e7546b0

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a95a2a150a6a47c77635a600f28733ea7c7dc86222bb82a8fa91fb6834fcdf4c
MD5 26169cbbf9a96fb8fa29d73e20d0e903
BLAKE2b-256 c80b331ffda055ca55cfd0140e62cf8a21cfcccbc6354cb08f45f716543bd011

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3c3774e4672192abd722fc4d27bf26b3b6666323881bd81c3eeedd1402539278
MD5 47722c98c67bb3ce513fb8f8e4e30975
BLAKE2b-256 e7ab49e6f1363fb93fc9d5eebb518ba5677d689befae3039f44018ff9d97ecf9

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dca934c3e9cb5aa4c4612269410857df3a06bd6bb78bcd6e8635e50d6faaedfd
MD5 2f6fbd52228685c9eef16059344fbacf
BLAKE2b-256 d0dde2eaf9c5e08413804123c822645df55c08b93aed24391a2efef2b6dea284

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6f3645f1d3bfa5cb43224649e59dbf1142805a33c1a5a33e4480e99d7897f8a6
MD5 fb7fe9d89fe6c61381621520cab4c2e8
BLAKE2b-256 c129719bd5a09adbc19a151b6473ccff0b1af0c388c4c50ceae7047e14086d03

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 d75bfee83ed52958700155a8223f15b5bc857bf5ab824aece9db205948ab802e
MD5 bc184f63d624fe14df194f1ab2a5a856
BLAKE2b-256 4b6b2dd10d1ba1548c3823d345d278708d29fd80ec5c54a068bfd2c0204c16ea

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp312-none-win32.whl.

File metadata

  • Download URL: egobox-0.12.0-cp312-none-win32.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for egobox-0.12.0-cp312-none-win32.whl
Algorithm Hash digest
SHA256 80e686476f39223124834f117597b91b406f83f1f551965ecb74d8478a92c737
MD5 3ac425938bfdcb4f4103c91efbdde931
BLAKE2b-256 6626f3f17b8e75cda07025ea2bb368d4d5a13cf0d111864d83e01505f5e07d28

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6d3b83f865ed3ed0b7b326a7a474b2f714edb3a1c5ccf5342ecc77958fb45d3a
MD5 38e9acfcdddd7efbe2c944c8300d3222
BLAKE2b-256 45509d2b0b2670ed768a0ed744b686738259be93948136b072a7de758cbfe1f0

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9f7af23e96b16b68bb304932d671858ab7c842a65ed04dd9f9c441aceb777625
MD5 2e0513980c544800323d548945c5e7b9
BLAKE2b-256 bf6a60a3968e0411aae531a0b3fab692da313e12576eb57b392e03d7c9601525

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 61f239d0cb5ddc666a14d8d67c1017d1126529872b2303d233d93e4bcfd68546
MD5 75c2a2ee8da5dcabe5eddb8d467a497a
BLAKE2b-256 1d30c4be56c65fb93d8063c49fae987fba436d0c986391054d128574d57cd3df

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp311-none-win32.whl.

File metadata

  • Download URL: egobox-0.12.0-cp311-none-win32.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for egobox-0.12.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 50f81e8107567b2e9ec45b376428d32d2bd8d5c34e44abe7194912387f51e914
MD5 abe84434f6644ab72a4821fd6a83334b
BLAKE2b-256 d7972be0fc9c705071f985cbc4fc4c40621abdde624f0200d5e5cbab095ff544

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45f149f76a60479fc33465405efaa81401f804f62a225e1bc7c49b5a2b0cb089
MD5 e80817f7365d9a379754b4928cd8a738
BLAKE2b-256 eb2e6bfe58fdd933dd5663878d09cdae6a32df315dce975cdbb5da1beabba40f

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 abb18cb6824ada7eb44a244a1bdc73279be7bc2b9456b47bff38a7bc9ecd46d6
MD5 287230bbc8851b777ed03b16d542151d
BLAKE2b-256 be0f80dd6a85ff62b125facb4035e78454eed171b57f3f68f8925963932faa7d

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 44a1cd22ef2c2462fd8248708cd3a6b435f8833ca2a1f720a737bd8d2f9f73b8
MD5 42134d372f80fefdf615e779cc133b2c
BLAKE2b-256 9e1d2bcbe09434dc12e040bdb115b2d4fa4183078be6ea69ce2738be49d6d3a8

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp310-none-win32.whl.

File metadata

  • Download URL: egobox-0.12.0-cp310-none-win32.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for egobox-0.12.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 91edeaaa97d2a33683362d0975440cda740932605889f44ffcffa3b20b85a126
MD5 fa1fa82eb3e016360bb9c3c8482984ce
BLAKE2b-256 f19d3761f8886f029c9a1f4e495d43df77ecfdfdf0c1d150638475968b4b038d

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 987c43d572c5c85f6d7dea49915f467cae7e58d55e5834249e90e2dc538cd61c
MD5 71355e8a15ffb558d715b46bf11042e2
BLAKE2b-256 c64bea572241023a195c5404439e162a595b7a87a3cceca71294fca6881888fe

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7d808240ce9b91af0654b4ccbe25329b8d01e6423253ff69db0c9afdbab99d47
MD5 23935cc451a6b90d8616e4023d0af4c8
BLAKE2b-256 b84e2432f846f341064b8196e8c5d0314c72eec7e681d851a1f3c6341871e8fb

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 35113f525a7107cc258c2873592c8f27d6293c4fd195f5dd4d71dc44ca21c368
MD5 adb5f1a92c1bf902866fe5a9760a6d47
BLAKE2b-256 01a14f153b5aab60bf195520e0168ca6556022640764776f032443f77831b03f

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp39-none-win32.whl.

File metadata

  • Download URL: egobox-0.12.0-cp39-none-win32.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for egobox-0.12.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 4543c6638237f849c207b8ccc49ca81b759520c606adb3dff836c85a28e212de
MD5 a6fcaa0e1ad84d10fee24bbe1edbe491
BLAKE2b-256 9adea6f37b08cc04821b89c80ca918be9347577eb53c587601a23d732a65606f

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ceb81d0f60af185bdcdf943f5db48ea80f18638962d62584ba407417b742ed6
MD5 1d6df761a02ce132289cfa69694e111a
BLAKE2b-256 bfee75fec0aa349e39ba4045ff2f1b14714a8fc9d89ac21823abc885543d7faa

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ac6b2e621cdf12e7b83eee2445bd9dd2da278a746815a055928c988db8281537
MD5 70a5054c54e0727b3f314c5853c0bc60
BLAKE2b-256 70e9ad0fbb6deb2bcf7e5e31829f02f0b81c6ce86f663e304c46fd2fb3233fa1

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 de862989223efe7661b9f63215d861e113187acc75aea3597ccf19b3a424bd31
MD5 00d52353e9fde1676baa8024c60e7a97
BLAKE2b-256 94921d0d4c27fa6befeb7eb63e1d0f1bc5827f5cbe2af46c1cd827d0d2249c7e

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp38-none-win32.whl.

File metadata

  • Download URL: egobox-0.12.0-cp38-none-win32.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for egobox-0.12.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 827fd378c45502f7ab74013a080dd0e873193e6057b771b5bcb6c9ba817e6149
MD5 b3bebadb91b59b0c5f09827bdfce786f
BLAKE2b-256 17bfb0cf33a3dfda8995de59d633b1e283fa6112f86ff337412b6c6ffda99914

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c5b80215d60f71b47d01f818c76860025f880622f3f8e07ce0eff7bac0b9b96
MD5 338d65da05439777ae2624f77269c95c
BLAKE2b-256 a072914f1998f6270e1fcc31034832ee44d95199508505534dba6e097521b9eb

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9fb39a1795f054048b106ebaf61e8447cc831ab6db109eaaf8362be9631b165e
MD5 55ca4c54d031fc2d62651d07aad857e5
BLAKE2b-256 aa659a64a4b85d84052c98dac5fba4a78eb13c902ab4d0eeab7505603f286f34

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 1760c1a75450067972f709ba739ec4ad61849926df9632aac6ec9a3e3d466e5b
MD5 eb5dbc9103eb6a7396ea6060a14322b6
BLAKE2b-256 3d9145a350caba38e552e5e599bedfca1d5cdcc2803464e6394767e830ad2320

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp37-none-win32.whl.

File metadata

  • Download URL: egobox-0.12.0-cp37-none-win32.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for egobox-0.12.0-cp37-none-win32.whl
Algorithm Hash digest
SHA256 f6bce8ecc6b597ff8be6e0bed07a8f07bd6e2bf29f0eaef3e9603961d593cf46
MD5 567d89852e320eeb41afd4a00daefce9
BLAKE2b-256 8f6abf99f0a0ec11af6b21e45a25b3fac51c95f13ba81b308ff0983e6a481318

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aedbb70c4e6bccebb769fcf166a73f82ac44b77f5632f26eb02a00a54bc5d7c5
MD5 8282807a59363cbb3b9165a2da88434a
BLAKE2b-256 a98ce528c82ad67ff560d6c40b0e967e55ce7ddb7a89ef521ce9734fe8f18c46

See more details on using hashes here.

File details

Details for the file egobox-0.12.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.12.0-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d83b2142d93a8915b22a2b98f2334070eb9f7daa05aa6fc7bf47bc1cd69c9a48
MD5 15f01b62bdf2492a00360d95e143175b
BLAKE2b-256 beaaf11f4dd4735eff7a9efa1fbe8724c95f039c70f5a85aa1092abd7c609c4a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page