Skip to main content

A toolbox for efficient global optimization

Project description

egobox

tests pytests linting DOI

Rust toolbox for Efficient Global Optimization algorithms inspired from SMT.

egobox is twofold:

  1. for end-users: a Python module, the Python binding of the optimizer named Egor and the surrogate model Gpx, mixture of Gaussian processes, written in Rust.
  2. for developers: a set of Rust libraries useful to implement bayesian optimization (EGO-like) algorithms,

The Python module

Thanks to the PyO3 project, which makes Rust well suited for building Python extensions. You can install the Python package using:

pip install egobox

See the tutorial notebooks for usage of the optimizer and mixture of Gaussian processes surrogate model.

The Rust libraries

egobox Rust libraries consists of the following sub-packages.

Name Version Documentation Description
doe crates.io docs sampling methods; contains LHS, FullFactorial, Random methods
gp crates.io docs gaussian process regression; contains Kriging, PLS dimension reduction and sparse methods
moe crates.io docs mixture of experts using GP models
ego crates.io docs efficient global optimization with constraints and mixed integer handling

Usage

Depending on the sub-packages you want to use, you have to add following declarations to your Cargo.toml

[dependencies]
egobox-doe = { version = "0.15" }
egobox-gp  = { version = "0.15" }
egobox-moe = { version = "0.15" }
egobox-ego = { version = "0.15" }

Features

The table below presents the various features available depending on the subcrate

Name doe gp moe ego
serializable ✔️ ✔️ ✔️
persistent ✔️ ✔️(*)
blas ✔️ ✔️ ✔️
nlopt ✔️ ✔️

(*) required for mixed-variable gaussian process

serializable

When selected, the serialization with serde crate is enabled.

persistent

When selected, the save and load as a json file with serde_json crate is enabled.

blas

When selected, the usage of BLAS/LAPACK backend is possible, see below for more information.

nlopt

When selected, the nlopt crate is used to provide optimizer implementations (ie Cobyla, Slsqp)

Examples

Examples (in examples/ sub-packages folder) are run as follows:

cd doe && cargo run --example samplings --release
cd gp && cargo run --example kriging --release
cd moe && cargo run --example clustering --release
cd ego && cargo run --example ackley --release

BLAS/LAPACK backend (optional)

egobox relies on linfa project for methods like clustering and dimension reduction, but also try to adopt as far as possible the same coding structures.

As for linfa, the linear algebra routines used in gp, moe ad ego are provided by the pure-Rust linfa-linalg crate, the default linear algebra provider.

Otherwise, you can choose an external BLAS/LAPACK backend available through the ndarray-linalg crate. In this case, you have to specify the blas feature and a linfa BLAS/LAPACK backend feature (more information in linfa features).

Thus, for instance, to use gp with the Intel MKL BLAS/LAPACK backend, you could specify in your Cargo.toml the following features:

[dependencies]
egobox-gp = { version = "0.15", features = ["blas", "linfa/intel-mkl-static"] }

or you could run the gp example as follows:

cd gp && cargo run --example kriging --release --features blas,linfa/intel-mkl-static

Citation

DOI

If you find this project useful for your research, you may cite it as follows:

@article{
  Lafage2022, 
  author = {Rémi Lafage}, 
  title = {egobox, a Rust toolbox for efficient global optimization}, 
  journal = {Journal of Open Source Software} 
  year = {2022}, 
  doi = {10.21105/joss.04737}, 
  url = {https://doi.org/10.21105/joss.04737}, 
  publisher = {The Open Journal}, 
  volume = {7}, 
  number = {78}, 
  pages = {4737}, 
} 

Additionally, you may consider adding a star to the repository. This positive feedback improves the visibility of the project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

egobox-0.15.2.tar.gz (980.0 kB view details)

Uploaded Source

Built Distributions

egobox-0.15.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

egobox-0.15.2-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

egobox-0.15.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

egobox-0.15.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

egobox-0.15.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

egobox-0.15.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

egobox-0.15.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

egobox-0.15.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

egobox-0.15.2-cp312-none-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

egobox-0.15.2-cp312-none-win32.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86

egobox-0.15.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

egobox-0.15.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

egobox-0.15.2-cp312-cp312-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

egobox-0.15.2-cp312-cp312-macosx_10_12_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

egobox-0.15.2-cp311-none-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

egobox-0.15.2-cp311-none-win32.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86

egobox-0.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

egobox-0.15.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

egobox-0.15.2-cp311-cp311-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

egobox-0.15.2-cp311-cp311-macosx_10_12_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

egobox-0.15.2-cp310-none-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

egobox-0.15.2-cp310-none-win32.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86

egobox-0.15.2-cp310-cp310-manylinux_2_35_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.35+ x86-64

egobox-0.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

egobox-0.15.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

egobox-0.15.2-cp310-cp310-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

egobox-0.15.2-cp310-cp310-macosx_10_12_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

egobox-0.15.2-cp39-none-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

egobox-0.15.2-cp39-none-win32.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86

egobox-0.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

egobox-0.15.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

egobox-0.15.2-cp38-none-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

egobox-0.15.2-cp38-none-win32.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86

egobox-0.15.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

egobox-0.15.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

egobox-0.15.2-cp37-none-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7 Windows x86-64

egobox-0.15.2-cp37-none-win32.whl (2.6 MB view details)

Uploaded CPython 3.7 Windows x86

egobox-0.15.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

egobox-0.15.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

File details

Details for the file egobox-0.15.2.tar.gz.

File metadata

  • Download URL: egobox-0.15.2.tar.gz
  • Upload date:
  • Size: 980.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for egobox-0.15.2.tar.gz
Algorithm Hash digest
SHA256 02b79d533808b2c8f4c6b0b4a1e4a1e01a00e9dd43bb8d3bcf6271a379a4ba49
MD5 ab3cd8fc5bb5dec4dd3720f87a8e6504
BLAKE2b-256 5e2f262c1d327159629e282914cd7c9e469b5b13d13a897c632237f5cca20cbb

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f3356d59ef7828de2db394cbcc34f5f0ec5f33798c47cbca375d88b0d9c9948
MD5 bd28c2a112c5eb9eab19c09ffa2f0201
BLAKE2b-256 6a35de5d3d5182622498ebcea98434e16940ad7baca8d81cc10d93b298df1917

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f7dd4f712dbc4d0af4aa0735736d38eefb6f2e67d55c48bc27797903601e5be3
MD5 67cbdfc5275979881fe79fc3f7261bc6
BLAKE2b-256 1994c12c385f7f4afb55b72168ca7e397323e7892e827d6bf18d66ccc92b68b2

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eed8584db7fd9a9c7f50ac6e242a89b9ef050a4dfe83a9134c303043d7490afe
MD5 88ca04a6f23822bd149b5bbf50c5ed06
BLAKE2b-256 574667115184afe690e9dd706a19ea526eba540b11327cd11a9b8888c6191aca

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 20f4c21f0238410fe49f173e9e8ead6a965f0c564f9717f2673fdeb57e2c94fc
MD5 13ce9042993319d702f3d2d0b272e57d
BLAKE2b-256 d23f95f953a4397b98fac1789ae847f269b2801d2435e57ceab0956c16e82182

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a96b244c5764a293ff3d63ca51d8c2bef0c703418aa0df6378cccc0ac45a3e5
MD5 cf45fdd6ff38c570ae0f05a8dc7043f0
BLAKE2b-256 a49e9b0ab927633e20210a06e12d68e3e1bdbc585a84e8f9f76a9aeb0fe8e945

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 55d1b48370b016ae17a9602fa1c471574c5afb4f813f5e780dc3ff47a337e082
MD5 446f876bd1bd523c0399daf43442c7c4
BLAKE2b-256 ebc8fd3a626d957c14523bbd3ed8414da5e8d9e3eeb5c963c72f512b06044d63

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 621c8b84b0de1f635f54c38ed9524cb72d891b4c0238a21769c886af6c2cc2f4
MD5 234f750a0510cef7f0b87b8a8ebe94e9
BLAKE2b-256 cea1be591077ee1e80ed226b3f607a0f17bd25c4faefc1979b01d5305dc3992a

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0d8dad2071ec0a5533bde2fab2d89f42568b8ba158e552c2a936f0ea752da364
MD5 d5fea977743972e4fba58f26c450fdc6
BLAKE2b-256 d405b402ad1ba8f8b2532981f9cdbc2bc514c82e0246d93c7f648a7890a062cc

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 76f536ae9fb84f93b6c284db6c4ec487ca7aa97000e9d9fa32731d277737d3fe
MD5 42c668e421086175e9a9a4c05fad37ad
BLAKE2b-256 a92625528d7d4d8b82bfaa781f5aa7cdbf787316323510cbf2ebd79a8df0afb4

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp312-none-win32.whl.

File metadata

  • Download URL: egobox-0.15.2-cp312-none-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for egobox-0.15.2-cp312-none-win32.whl
Algorithm Hash digest
SHA256 bf5b31410f5aaa0d2b21f7a2568feea1c656f4aa8c07bd865f706cb35e6ecabb
MD5 82482a57dc6a8c4eafd85f70a0950b21
BLAKE2b-256 2b194fd6b229803f1443302500e35acaa2580d69441cb12a4348cfb3cab777dc

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df63fcb6162483315799e942f7764654447bea661e7bb838913d246df96474ba
MD5 3a50b7f24d75046a685ebcf417bc0ad0
BLAKE2b-256 431a1dc53fcf790aaa6cb400b2974e4b782f8c8baafaefcddf5fa2032882e408

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7056fd14fcc588c62d40408a41a3651f039c09c8eea7489342221b16c178a672
MD5 34c1554f47536aa99be841f8144eb654
BLAKE2b-256 e51d379e4edf4f976a698dcf69a6d64064b31630b5c5047f62ec7387fe9b3c29

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 569a3a1c45d8955cff1996d11153558b45890ac923e352f96edbaed3e2d2d52c
MD5 be444aa6bcfd2bf49ed0ad66c08236fc
BLAKE2b-256 d892fc18dcfe032a7258acc283ef74920fff2cd55e0aef5848de291748140f4a

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 4310036f5a93193686988883914aa22b7eaff10a3042e8a2e52cfe9802efa6dc
MD5 dc7ed530f9ad8a093fefb078fd78fb1e
BLAKE2b-256 20f2690270147f1c7a0e4ece94c85fe6d5f8f9470c34f4809875b71770f0ca9d

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 5e698e7a69cabb1673a0a446ae40fc83fb3b2c612381d27c3940ebf50682e478
MD5 3b5034b890dd693b4be087157e44558c
BLAKE2b-256 c40bebb6f4425813d5c63e2c4ddc2ee100070989145f6900c9469899874d9535

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp311-none-win32.whl.

File metadata

  • Download URL: egobox-0.15.2-cp311-none-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for egobox-0.15.2-cp311-none-win32.whl
Algorithm Hash digest
SHA256 a8646d430f3377c3a74bec501cdd610f823093c52c86b9e4bebf7ab2cafac748
MD5 fcb58436a808add94bc855a99d2ca32d
BLAKE2b-256 551f5bee4d7a6986ad881b0dbe1cd29fe3e892cf346d2876c6d2b8ea0448d66b

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ada800c994923fa25034449f015d28b979fb52bdaed70c50de76e065dededd9
MD5 c8f4b788b02c9d3a0ff602fc64b67134
BLAKE2b-256 62c1aba444e2bbaaae351f85143359968296ea81ccdca300f8691a02c6da9611

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a226e2a0cf70b797963522f76949d949549108402219ab8b96a319467d727adb
MD5 7273dc763d5279ab4237f020cee22ba7
BLAKE2b-256 8671b478bea9298fd76fb8e73f8680d3164e37b5ded858ed7a93d07a5a954aab

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3bcc8c24c55dc7c9e89314fee1d25581cc3cd3ed5c1b77d6a3a429d53e966664
MD5 126462a8d2f0e2d9b806cd21be63bfc1
BLAKE2b-256 c2ba8e15f809e2401553c3ed6df7a44d915bf4d733f81612e759f5d6759fbde3

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 4093567d3936514ce70891c47bbe5f3431ab0da56f39e3c7c91cfd3ac9fe51f6
MD5 a29e2d32109007a09d9c5b217d98b884
BLAKE2b-256 94bc02c9e2860d43751ce0f9b79e4d3cc6bb13d9e71e7768944dedf1f4d052d4

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 0f723823bb7ea7c11f549f7c8ae6bbcc566d729e8ebaaafac7d8df00591d7369
MD5 9dab04b4137e913d6be2a05d5611ea18
BLAKE2b-256 48ec6669c0cd11c8033dca95246a2a51a2245b41f1bd01aad3f60bbb5a87e3a7

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp310-none-win32.whl.

File metadata

  • Download URL: egobox-0.15.2-cp310-none-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for egobox-0.15.2-cp310-none-win32.whl
Algorithm Hash digest
SHA256 c32000820fb9bebd430a79fa70845ec791c61d96fe28d6d3e109cd8216904e42
MD5 3923b635c26123ce63759e3fe9eacb6c
BLAKE2b-256 30dfe90aa3e87af4848c523aa4ce623c999c5288fd1d7b166dc8a2b069ac2535

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp310-cp310-manylinux_2_35_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp310-cp310-manylinux_2_35_x86_64.whl
Algorithm Hash digest
SHA256 f79b3ed01f030a354912f726f3d507602cff5b5b93807ab03db203a632f45f9c
MD5 9061fb72e78be11a61c04b065d1a3ce8
BLAKE2b-256 4570818a1b6f90374013678bd0e328c5229ead735bfc74810c64ac357a91d3a2

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1f7d034a7acc23a22715d220ba3a054509cd85e89a1b5a55fa3d2e16f32cd3de
MD5 2784faabfff44b283cbce39fae60845a
BLAKE2b-256 bc7383b956ff14dba3bf3eb087328fc2998b27570736d51c95146449fc82c02a

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b3e20a4f62a353b7e7ea4e26888c7d138b498203772a678673b114d40c328100
MD5 aa6dcc60c8a4ba0f70084ec9f402a476
BLAKE2b-256 1795bf312a89aaefe7bd32dc32ecbf1d758e5a5a2520fd4ffe38b6f97294aafd

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b002926be2f95cac9c53f7e1854a9a29fdf483100e950e08155f0b7fa762d3d4
MD5 793f6ccba6a4ef98bd8ba75b34c94c1e
BLAKE2b-256 2774b0837470c15c1677af498c685d6e1755623003e2db54c63600b3eab731da

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 64a0ac1e0eafa69d4b761b3d81112179ab5138159d7eed35983c0350e16088fa
MD5 53dc325f3342ff9f5a531382dfbbb8c5
BLAKE2b-256 0fc14156e09a22e51aaacc931e338c81fc3f9d9e2ded67c1e293a70ef4bb30fe

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 c100ceff4e352bcb5356fd8945a62edb2f40d6b505e1c9532c02ae0bd2db753a
MD5 2a00c5aea963db68fc48a899872f1389
BLAKE2b-256 96b857f5f42d245e48fea42ac3eea7253a4f953ec4bda65a3fe5d60bf9c69736

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp39-none-win32.whl.

File metadata

  • Download URL: egobox-0.15.2-cp39-none-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for egobox-0.15.2-cp39-none-win32.whl
Algorithm Hash digest
SHA256 a3af4f30567f6e378f875d3f38580957f0e0ffcf4b88803d352e81903c3c8de1
MD5 a4f2ec2f6e62c99e0c3093980ffdb598
BLAKE2b-256 b478ac0f3741e1a523c2c6608652486dc4a9819b4da2bc12161f9589cceaf4b0

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae91d23a8b1376ce91be5fe2033c4e5f8840207b3b0861c3b17f849563c20ad1
MD5 ce88ceed6e0b5a019a12786d84cdf220
BLAKE2b-256 df861ad2dad98c9d8536293a822134739a31f08a3065d097dbe29622354a1769

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 27afc04b3037c82352e39551ed37c7972ce35cce61a4ea69f8c2c2670b373a8b
MD5 e3d49aad5eb1b35832e39e80570fdc3b
BLAKE2b-256 dd4103ecc1bc21e6f513d5f265444a404d47b97d7fe72f1d73dab70ec35f1a00

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 c03fae60b4cd091ae91e0be16e78aa36db80f20f750524cafba587cd6f5267a7
MD5 7c478948bdd7867601eda69353779e29
BLAKE2b-256 5542637187e5d43f412364caf56b0e3c26b76786750c93bacd606e770e5f7800

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp38-none-win32.whl.

File metadata

  • Download URL: egobox-0.15.2-cp38-none-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for egobox-0.15.2-cp38-none-win32.whl
Algorithm Hash digest
SHA256 2b275598c3249b54ae2c85199782ae19c8de86da5d0b2096f5a240f3bbb50a24
MD5 96eba8863523e23c038531a676955077
BLAKE2b-256 5ade4b301beb7e7df1188c700b56fe31147ea5bca8fb53f005bddf9db54826eb

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac0dc9f105ba4d3d6f7e7febb1463285ffab5dc5e1731549e82308190c134ecb
MD5 cbeed4ec65fa2dda9a3fe077b6ab8c85
BLAKE2b-256 9d201b9e746c80df9ae417bb4ea1880b7a1351a6509f8b0676354890c8f8dd12

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 06ab9770c7de46058ec6c7f543cb33c50eeedc6882259f36ab8aaf95341ffc1f
MD5 97143bb37e1f3aad8d4aef01abfe1497
BLAKE2b-256 c2ae25aa876f2fdd4929a6d9adae70dc1e35d615dbc6f1c019ee442031a2eee6

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp37-none-win_amd64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 7881ac9e4a966f14c52028a1ac79493521566fda12d8b272594c8142d57f0732
MD5 e11bf59ae0c80834229fb69c00a33d62
BLAKE2b-256 29428ed99e8d79e0e0f6a294567f8a740400d26ff225b50865f5aee48fc2a965

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp37-none-win32.whl.

File metadata

  • Download URL: egobox-0.15.2-cp37-none-win32.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for egobox-0.15.2-cp37-none-win32.whl
Algorithm Hash digest
SHA256 d6bfbe81c0c38a977fd7e43d411cb455e6d6ef4c60c49d74517c5b2588af0440
MD5 d9a0685dd773d61b9c09909731ef8d04
BLAKE2b-256 985059653b941a7f8d0b0f348dbfccb01eb9046fa5432d96a2211d575400fc03

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aca1b53621f64c2d62cd137bb84fb8a3f06843a7204796248d97e826964582b8
MD5 55cfc19ba54b7e0c03ec76105264ad23
BLAKE2b-256 10b9c4666f71d3de80f9eb7cd5929f601393c88643a49904e01e87974ac78d09

See more details on using hashes here.

File details

Details for the file egobox-0.15.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for egobox-0.15.2-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 feae0a69dbe28a925bd032c4a030c8c4b718a73f5f58888314cca93a80890956
MD5 d1a26986cf77acdb4b9b3d7cfa2e9309
BLAKE2b-256 b5712614ea03e1cf57c25c5e150ac9e3c718a6f2da54f59dff16f1b58b53d485

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page