Skip to main content

Model of an electric distribution network for calculation

Project description

egrid

Purpose

Egrid is the outsourced first part of a power flow calculation for an electric, balanced, distribution network. Instances of Model provide a structure for calculating current and power flow through lines and into consumers (using the voltage vector which is the result of a power-flow-calculation).

Function make_model(*args) creates an instance of Model from arguments of type

- Slacknode
- Branch (line, series capacitor, transformer winding, transformer,
  closed switch)
- Injection (consumer, shunt capacitor, PQ/PV-generator, battery)
- Output (indicates that measured flow (I, P or Q) or a part thereof
  flows through the referenced terminal (device or node+device))
- PValue (measured active power)
- QValue (measured reactive power)
- IValue (measured electric current)
- Vvalue (measured voltage or setpoint)
- Defk/Deft (definition of a scaling/termional factor, for estimation)
- Defvl (definition of voltage limits)
- Klink/Tlink (associates a factor to an injection or terminal of a branch)
- Defoterm (term for objective function)

including tuples, lists and iterables thereof (for a power-flow-calculation just Slacknode ... Injection are necessary). Additionally, make_model can consume network descriptions as multiline strings if package 'graphparser' is installed. This method is intended to input very small electric networks using a text editor.

Most fields of Model instances provide pandas.DataFrame instances. Electric values are stored per unit. Branch models are PI-equivalent circuits. Active and reactive power of injections have a dedicated voltage exponent.

Details of egrid.model.Model

Fields of egrid.model.Model

nodes: pandas.DataFrame (id of node)

* .idx, int, index of power-flow-calculation node

slacks: pandas.DataFrame

* .id_of_node, str, id of connection node
* .V, complex, given voltage at this slack
* .index_of_node, int, index of power-flow-calculation node

injections: pandas.DataFrame

* .id, str, unique identifier of injection
* .id_of_node, str, unique identifier of connected node
* .P10, float, active power at voltage magnitude 1.0 pu
* .Q10, float, reactive power at voltage magnitude 1.0 pu
* .Exp_v_p, float, voltage dependency exponent of active power
* .Exp_v_q, float, voltage dependency exponent of reactive power
* .index_of_node, int, index of connected power-flow-calculation node

terminal_to_branch: numpy.array

* [0, br] indices of terminal A
* [1, br] indices of terminal B
index of branch is the column index

branchterminals: pandas.DataFrame

* .index_of_branch, int, index of branch
* .id_of_branch, str, unique idendifier of branch
* .id_of_node, str, unique identifier of connected node
* .id_of_other_node, str, unique identifier of node connected
   at other side of the branch
* .index_of_node, int, index of connected power-flow-calculation node
* .index_of_other_node, int, index of power-flow-calculation node connected
   at other side of the branch
* .y_lo, complex, longitudinal branch admittance
* .y_tr_half, complex, half of transversal branch admittance
* .g_lo, float, longitudinal conductance
* .b_lo, float, longitudinal susceptance
* .g_tr_half, float, transversal conductance of branch devided by 2
* .b_tr_half, float, transversal susceptance of branch devided by 2
* .side, str, 'A' | 'B', side of branch, first or second

bridgeterminals: pandas.DataFrame

* .index_of_branch, int, index of branch
* .id_of_branch, str, unique idendifier of branch
* .id_of_node, str, unique identifier of connected node
* .id_of_other_node, str, unique identifier of node connected
   at other side of the branch
* .index_of_node, int, index of connected power-flow-calculation node
* .index_of_other_node, int, index of power-flow-calculation node connected
   at other side of the branch
* .y_lo, complex, longitudinal branch admittance
* .y_tr_half, complex, half of transversal branch admittance
* .g_lo, float, longitudinal conductance
* .b_lo, float, longitudinal susceptance
* .g_tr_half, float, transversal conductance of branch devided by 2
* .b_tr_half, float, transversal susceptance of branch devided by 2
* .side, str, 'A' | 'B', side of branch, first or second

branchoutputs: pandas.DataFrame

* .id_of_batch, str, unique identifier of measurement batch
* .id_of_node, str, id of node connected to branch terminal
* .id_of_branch, str, unique identifier of branch
* .index_of_node, int, index of power-flow-calculation node connected
   to branch terminal
* .index_of_branch, int, index of branch

injectionoutputs: pandas.DataFrame

* .id_of_batch, str, unique identifier of measurement batch
* .id_of_injection, str, unique identifier of injection
* .index_of_injection, str, index of injection

pvalues: pandas.DataFrame

* .id_of_batch, str, unique identifier of measurement batch
* .P, float, active power
* .direction, float, -1: from device into node, 1: from node into device

qvalues: pandas.DataFrame

* .id_of_batch, str, unique identifier of measurement batch
* .Q, float, reactive power
* .direction, float, -1: from device into node, 1: from node into device

ivalues: pandas.DataFrame

* .id_of_batch, str, unique identifier of measurement batch
* .I, float, electric current

vvalues: pandas.DataFrame

* .id_of_node, str, unique identifier of node voltage is given for
* .V, float, magnitude of voltage
* .index_of_node, index of node voltage is given for

shape_of_Y: tuple (int, int)

shape of admittance matrix for power flow calculation

count_of_slacks: int

count_of_slacks

factors: egrid.factors.Factors (namedtuple)

* .gen_factordata, pandas.DataFrame (index: ('step','id'))
    * .step, -1
    * .type, 'var'|'const', type of factor decision variable or parameter
    * .id_of_source, str, id of factor (previous optimization step)
       for initialization
    * .value, float, used by initialization if no source factor in previous
       optimization step
    * .min, float
       smallest possible value
    * .max, float
       greatest possible value
    * .is_discrete, bool
       just 0 digits after decimal point if True, input for solver,
       accepted by MINLP solvers
    * .m, float,
       multiplier,
       the effective value of the factor is a linear function
       of var/const (mx + n)
    * .n, float,
       value of factor when var/const is 0,
       the effective value of the factor is a linear function
       of var/const (mx + n)
    * .index_of_symbol, int
    * .cost, float, cost of changing (for Volt-Var-control)

* .gen_injfactor, pandas.DataFrame (index: ('id_of_injection', 'part'))

    * .step, -1 (int)
    * id, str, ID of factor

* .terminalfactors, pandas.DataFrame

    * .id, str, identifier of factor
    * .index_of_terminal, int
    * .index_of_other_terminal, int
    * .type, 'var'|'const'
    * .id_of_source, str
    * .value, float
    * .min, float
    * .max, float
    * .is_discrete, bool
    * .m, float
    * .n, float
    * .index_of_symbol, int
    * .cost, float, cost of changing (for Volt-Var-control)

* .get_groups: function (iterable_of_int) -> (pandas.DataFrame)

    pandas.DataFrame(index: ('step', 'id'))

        * .type, 'var'|'const', type of factor decision
           variable or parameter
        * .id_of_source, str, id of factor (previous optimization step)
           for initialization
        * .value, float, used by initialization if no source factor
           in previous optimization step
        * .min, float
           smallest possible value
        * .max, float
           greatest possible value
        * .is_discrete, bool
           just 0 digits after decimal point if True, input for solver,
           accepted by MINLP solvers
        * .m, float
           increase of multiplier with respect to change of var/const
           the effective multiplier is a linear
           function of var/const (mx + n)
        * .n, float
           multiplier when var/const is 0.
           the effective multiplier is a linear function of
           var/const (mx + n)
        * .cost, float, cost of changing (for Volt-Var-control)

* .get_injfactorgroups: function (iterable_of_int) -> (pandas.DataFrame)

    pandas.DataFrame (index: ('step', 'id_of_injection', 'part'))

        * .id, str, ID of factor

mnodeinj: scipy.sparse.csc_matrix

converts a vector ordered according to injection indices to a vector
ordered according to power flow calculation nodes (adding values of
injections for each node) by calculating 'mnodeinj @ vector'

terms: pandas.DataFrame

* .id, str, unique identifier
* .args, list of strings, arguments for function
* .fn, str, identifier of function
* .weight, float, multiplier for term in objective function
* .step, int

messages: pandas.DataFrame

* .message, str, message on reason of error
* .level, int, 0 - information, 1 - warning. 2 - error

Making a Model

Function model_from_frames consumes a dictionary of pandas.DataFrames. model_from_frames aggregates nodes connected without impedance, creates indices, arranges data per branch-terminal from branch-data, calculates values of branches from admittances.

Function make_model generates a model from network device objects defined in egrid.builder.

Example - 3 nodes, 2 lines, 1 consumer:

node: 0               1               2

      |      line     |     line      |
      +-----=====-----+-----=====-----+
      |               |               |
                                     \|/ consumer

Python code for example, suitable input for function egrid.make_model (Branchtap is for demo only, it is used with transformers, however, transformers/transformerwindings are modeled using class Branch too.):

from egrid.builder import (
    Slacknode, PValue, QValue, IValue, Output, Branch,
    Injection, Defk, Deft, Klink, Tlink)

example = [
    Slacknode(id_of_node='n_0', V=1.+0.j),
    PValue(
        id_of_batch='pq_line_0',
        P=30.),
    QValue(
        id_of_batch='pq_line_0',
        Q=8.),
    Output(
        id_of_batch='pq_line_0',
        id_of_node='n_0',
        id_of_device='line_0'),
    IValue(
        id_of_batch='i_line_0',
        I=40.0),
    Output(
        id_of_batch='i_line_0',
        id_of_node='n_0',
        id_of_device='line_0'),
    Branch(
        id='line_0',
        id_of_node_A='n_0',
        id_of_node_B='n_1',
        y_lo=1e3-1e3j,
        y_tr=1e-6+1e-6j),
    Branchtaps(
        id='taps_0',
        id_of_node='n_0',
        id_of_branch='line_0',
        Vstep=.1/16,
        positionmin=-16,
        positionneutral=0,
        positionmax=16,
        position=0),
    Branch(
        id='line_1',
        id_of_node_A='n_1',
        id_of_node_B='n_2',
        y_lo=1e3-1e3j,
        y_tr=1e-6+1e-6j),
    Output(
        id_of_batch='pq_consumer_0',
        id_of_device='consumer_0'),
    Output(
        id_of_batch='i_consumer_0',
        id_of_device='consumer_0'),
    Injection(
        id='consumer_0',
        id_of_node='n_2',
        P10=30.0,
        Q10=10.0,
        Exp_v_p=2.0,
        Exp_v_q=2.0),
    Defk(step=(0, 1, 2), id=('kp', 'kq')),
    Klink(
    step=(0, 1, 2), objid='consumer_0', part=('p', 'q'), id=('kp', 'kq'))]

Valid input to make_model is a multiline pseudo graphic string e.g. this one:

               y_tr=1e-6+1e-6j                 y_tr=1e-6+1e-6j
slack=True     y_lo=1e3-1e3j                   y_lo=1e3-1e3j
n0(---------- line_0 ----------)n1(---------- line_1 ----------)n2
                                |                               |
                                n1->> load0_1_        _load1 <<-n2->> load1_1_
                                |      P10=30.0         P10=20.7       P10=4.3
                                |      Q10=5            Q10=5.7        Q10=2
                                |
                                |              y_lo=1e3-1e3j
                                |              y_tr=1e-6+1e-6j
                                n1(---------- line_2 ----------)n3
                                                                |
                                                      _load2 <<-n3->> load2_1_
                                                        P10=20.7       P10=20
                                                        Q10=5.7        Q10=5.7

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

egrid-0.0.7.tar.gz (51.9 kB view details)

Uploaded Source

Built Distribution

egrid-0.0.7-py3-none-any.whl (53.1 kB view details)

Uploaded Python 3

File details

Details for the file egrid-0.0.7.tar.gz.

File metadata

  • Download URL: egrid-0.0.7.tar.gz
  • Upload date:
  • Size: 51.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for egrid-0.0.7.tar.gz
Algorithm Hash digest
SHA256 cacc446a6538bf6ff38b0e017f43b8667a4750fdbda7f1943dd965290642bd15
MD5 1c5f548aa1ff998b0c8e6f444534efb7
BLAKE2b-256 c0d70ec4398183fb16c45f2875e7849384b80363308c0a470aa55935387730a0

See more details on using hashes here.

File details

Details for the file egrid-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: egrid-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 53.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for egrid-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 71ebda63a1a01bb8d5f51f50f6d1791cfcaf72d272448c2b6def11332f62e755
MD5 92da3c43f5392fd811b08753c338ce1e
BLAKE2b-256 21168f2c4b24accf355481239a61319696ec63671bf21c3b6802775dd5f83ebf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page