Skip to main content

Keep consistent order of eigenvalues and eigenvectors of successive eigenvalue/vector problems based on the inital ordering of eigenvalues from low to high by matching closest eigenvectors and eigenvalues.

Project description

Python versions on PyPI CeNTREX-TlF version on PyPI Code style: black

eigenshuffle

Adapted from code by bmachiel, which in turn was based on matlab eigenshuffle.

Consistently sort eigenvalues and eigenvectors of a series of matrices based on initial ordering from low to high.

Includes eigenshuffle_eig and eigenshuffle_eigh for non-hermitian and hermitian matrices, respectively.

Installation

Install from pypi with:

pip install eigenshuffle

or clone repo and install with pip or directly install from GitHub with:

pip install git+https://github.com/ograsdijk/CeNTREX-trajectories

Example

import numpy as np
import numpy.typing as npt
import matplotlib.pyplot as plt

from eigenshuffle import eigenshuffle_eig

def eigenvalue_function(
    t: float,
) -> npt.NDArray[np.float_]:
    return np.array(
        [
            [1, 2 * t + 1, t**2, t**3],
            [2 * t + 1, 2 - t, t**2, 1 - t**3],
            [t**2, t**2, 3 - 2 * t, t**2],
            [t**3, 1 - t**3, t**2, 4 - 3 * t],
        ]
    )

tseq = np.arange(-1, 1.1, 0.1)
Aseq = np.array([eigenvalue_function(ti) for ti in tseq])

e, v = np.linalg.eig(Aseq)

es, vs = eigenshuffle_eig(Aseq)

# sorting original eig result from low to high
v[np.argsort(e)]
e = np.sort(e)

fig, ax = plt.subplots()
lines = ax.plot(tseq, e)

for i in range(ei.shape[-1]):
    ax.plot(tseq, ei.real[:, i], "--", color=lines[i].get_color())

# for generating the legend
line1 = plt.Line2D([0, 1], [0, 1], linestyle="-", color="black")
line2 = plt.Line2D([0, 1], [0, 1], linestyle="--", color="black")

ax.set_xlabel("t")
ax.set_ylabel("eigenvalue")
ax.legend([line1, line2], ["sorted", "eigenshuffle"])
ax.grid()

consistenly sorted eigenvalues
Here the eigenvalues are consistently ordered, and are not switching positions after a level crossing (around t=0.3) when using eigenshuffle.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eigenshuffle-0.1.0.tar.gz (4.5 kB view details)

Uploaded Source

Built Distribution

eigenshuffle-0.1.0-py3-none-any.whl (5.2 kB view details)

Uploaded Python 3

File details

Details for the file eigenshuffle-0.1.0.tar.gz.

File metadata

  • Download URL: eigenshuffle-0.1.0.tar.gz
  • Upload date:
  • Size: 4.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.12.2 Windows/11

File hashes

Hashes for eigenshuffle-0.1.0.tar.gz
Algorithm Hash digest
SHA256 d7ba9ee7ab186c695aed7402f46653b606aa06118a1562c20862db4b71e8d973
MD5 60bf88e08b809ce00beacc78b08c3f49
BLAKE2b-256 db3a65c0ea9bfdd0d1dda73628759b47cd8141ca5183787cb1dd476565b5f826

See more details on using hashes here.

File details

Details for the file eigenshuffle-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: eigenshuffle-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 5.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.12.2 Windows/11

File hashes

Hashes for eigenshuffle-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 40188e28fcd3292ee440a46f75ecc74fa077e116502c07295b6584e889f6f1f6
MD5 922bda95b29198d255648d0ec61ab238
BLAKE2b-256 64b845bf4c58a6427923dc5cc59bf39cc4aaaeec908ab427d3ab582e7a89aab6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page