Skip to main content

Tensor Operations Expressed in Einstein-Inspired Notation

Project description

einx - Tensor Operations in Einstein-Inspired Notation

pytest Documentation PyPI version Python 3.8+

einx is a Python library that allows formulating many tensor operations as concise expressions using Einstein notation. It is inspired by einops, but follows a novel and unique design:

  • Fully composable and powerful Einstein expressions with []-notation.
  • Support for many tensor operations (einx.{sum|max|where|add|dot|flip|get_at|...}) with Numpy-like naming.
  • Easy integration and mixing with existing code. Supports tensor frameworks Numpy, PyTorch, Tensorflow, Jax and others.
  • Just-in-time compilation of all operations into regular Python functions using Python's exec().

Optional:

  • Generalized neural network layers in Einstein notation. Supports PyTorch, Flax, Haiku, Equinox and Keras.

Getting started:

Installation

pip install einx

See Installation for more information.

What does einx look like?

Tensor manipulation

import einx
x = {np.asarray|torch.as_tensor|jnp.asarray|...}(...) # Create some tensor

einx.sum("a [b]", x)                              # Sum-reduction along second axis
einx.flip("... (g [c])", x, c=2)                  # Flip pairs of values along the last axis
einx.mean("b [s...] c", x)                        # Spatial mean-pooling
einx.sum("b (s [s2])... c", x, s2=2)              # Sum-pooling with kernel_size=stride=2
einx.add("a, b -> a b", x, y)                     # Outer sum

einx.get_at("b [h w] c, b i [2] -> b i c", x, y)  # Gather values at coordinates

einx.rearrange("b (q + k) -> b q, b k", x, q=2)   # Split
einx.rearrange("b c, 1 -> b (c + 1)", x, [42])    # Append number to each channel

einx.dot("... [c1->c2]", x, y)                    # Matmul = linear map from c1 to c2 channels

                                                  # Apply custom operations:
einx.vmap("b [s...] c -> b c", x, op=np.mean)     # Global mean-pooling
einx.vmap("a [b], [b] c -> a c", x, y, op=np.dot) # Matmul

All einx functions simply forward computation to the respective backend, e.g. by internally calling np.reshape, np.transpose, np.sum with the appropriate arguments.

Common neural network operations

# Layer normalization
mean = einx.mean("b... [c]", x, keepdims=True)
var = einx.var("b... [c]", x, keepdims=True)
x = (x - mean) * torch.rsqrt(var + epsilon)

# Prepend class token
einx.rearrange("b s... c, c -> b (1 + (s...)) c", x, cls_token)

# Multi-head attention
attn = einx.dot("b q (h c), b k (h c) -> b q k h", q, k, h=8)
attn = einx.softmax("b q [k] h", attn)
x = einx.dot("b q k h, b k (h c) -> b q (h c)", attn, v)

# Matmul in linear layers
einx.dot("b...      [c1->c2]",  x, w)              # - Regular
einx.dot("b...   (g [c1->c2])", x, w)              # - Grouped: Same weights per group
einx.dot("b... ([g c1->g c2])", x, w)              # - Grouped: Different weights per group
einx.dot("b  [s...->s2]  c",    x, w)              # - Spatial mixing as in MLP-mixer

See Common neural network ops for more examples.

Deep learning modules

import einx.nn.{torch|flax|haiku|equinox|keras} as einn

batchnorm       = einn.Norm("[b...] c", decay_rate=0.9)
layernorm       = einn.Norm("b... [c]") # as used in transformers
instancenorm    = einn.Norm("b [s...] c")
groupnorm       = einn.Norm("b [s...] (g [c])", g=8)
rmsnorm         = einn.Norm("b... [c]", mean=False, bias=False)

channel_mix     = einn.Linear("b... [c1->c2]", c2=64)
spatial_mix1    = einn.Linear("b [s...->s2] c", s2=64)
spatial_mix2    = einn.Linear("b [s2->s...] c", s=(64, 64))
patch_embed     = einn.Linear("b (s [s2->])... [c1->c2]", s2=4, c2=64)

dropout         = einn.Dropout("[...]",       drop_rate=0.2)
spatial_dropout = einn.Dropout("[b] ... [c]", drop_rate=0.2)
droppath        = einn.Dropout("[b] ...",     drop_rate=0.2)

See examples/train_{torch|flax|haiku|equinox|keras}.py for example trainings on CIFAR10, GPT-2 and Mamba for working example implementations of language models using einx, and Tutorial: Neural networks for more details.

Just-in-time compilation

einx traces the required backend operations for a given call into graph representation and just-in-time compiles them into a regular Python function using Python's exec(). This reduces overhead to a single cache lookup and allows inspecting the generated function. For example:

>>> x = np.zeros((3, 10, 10))
>>> graph = einx.sum("... (g [c])", x, g=2, graph=True)
>>> print(graph)
import numpy as np
def op0(i0):
    x0 = np.reshape(i0, (3, 10, 2, 5))
    x1 = np.sum(x0, axis=3)
    return x1

See Just-in-time compilation for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

einx-0.2.1.tar.gz (78.7 kB view details)

Uploaded Source

Built Distribution

einx-0.2.1-py3-none-any.whl (98.1 kB view details)

Uploaded Python 3

File details

Details for the file einx-0.2.1.tar.gz.

File metadata

  • Download URL: einx-0.2.1.tar.gz
  • Upload date:
  • Size: 78.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for einx-0.2.1.tar.gz
Algorithm Hash digest
SHA256 d5ebecdf54dc9327d761441c05fb80b8d299f2f425e5d032e627ac2bde61b531
MD5 da59da055a546a35456032851c6e9865
BLAKE2b-256 261d8b9713ff42423032577b6d886bf7638fc856348ccb21cb2f8c6efe9bbf52

See more details on using hashes here.

File details

Details for the file einx-0.2.1-py3-none-any.whl.

File metadata

  • Download URL: einx-0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 98.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for einx-0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 df66c68ab4eaf593b70252eaca34a48a44d711ce7733b4a779ce783387d062dc
MD5 ed363288f3b7f670a2e9f1cf47019c69
BLAKE2b-256 4e42280fe2424e39b5611d017033567a065f79a2eaa43cf02f236aa07ccda448

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page