Skip to main content

A Python package for easily calculating information retrieval (IR) accuracy metrics using Elasticsearch and datasets.

Project description

Elasticsearch IR Evaluator

PyPI - Version

Overview

elasticsearch-ir-evaluator is a Python package designed for easily calculating a range of information retrieval (IR) accuracy metrics using Elasticsearch and datasets. This tool is ideal for users who need to assess the effectiveness of search queries in Elasticsearch. It supports the following key IR metrics:

  • Precision
  • Recall
  • Mean Reciprocal Rank (MRR)
  • Mean Average Precision (MAP)
  • Cumulative Gain (CG)
  • Normalized Discounted Cumulative Gain (nDCG)
  • False Positive Rate (FPR)
  • Binary Preference (BPref)

These metrics provide a comprehensive assessment of search performance, catering to various aspects of IR system evaluation. The tool's flexibility allows users to select specific metrics according to their evaluation needs.

Installation

To install elasticsearch-ir-evaluator, use pip:

pip install elasticsearch-ir-evaluator

Prerequisites

  • Elasticsearch version 8.11 or higher running on your system.
  • Python 3.8 or higher.

Complete Usage Process

The following steps will guide you through using elasticsearch-ir-evaluator to calculate search accuracy metrics. For more detailed and practical examples, please refer to the examples directory in this repository.

Step 1: Set Up Elasticsearch Client

Configure your Elasticsearch client with the appropriate credentials:

from elasticsearch import Elasticsearch

es_client = Elasticsearch(
    hosts="https://your-elasticsearch-host",
    basic_auth=("your-username", "your-password"),
    verify_certs=True,
    ssl_show_warn=True,
)

Step 2: Create and Index the Corpus

Create and index a new corpus. You can customize index settings and text field configurations, including analyzers:

from elasticsearch_ir_evaluator import ElasticsearchIrEvaluator, Document

# Initialize the ElasticsearchIrEvaluator
evaluator = ElasticsearchIrEvaluator(es_client)

# Specify your documents
documents = [
    Document(id="doc1", title="Title 1", text="Text of document 1"),
    Document(id="doc2", title="Title 2", text="Text of document 2"),
    # ... more documents
]

# Set custom index text field configurations
text_field_config = {"analyzer": "standard"}

evaluator.set_text_field_config(text_field_config)

# Create a new index or set an existing one
evaluator.set_index_name("your_index_name")

# Index documents with an optional ingest pipeline
evaluator.index(documents, pipeline="your_optional_pipeline")

Step 3: Set a Custom Search Template

Customize the search query template for Elasticsearch. Use {{question}} for the question text and {{vector}} for the vector value in QandA:

search_template = {
    "query": {
        "multi_match": {
            "query": "{{question}}",
            "fields": ["title", "text"],
        }
    },
    "knn": [
        {
            "field": "vector",
            "query_vector": "{{vector}}",
            "k": 5,
            "num_candidates": 100,
        }
    ],
}

evaluator.set_search_template(search_template)

Step 4: Calculate Accuracy Metrics

Use .calculate() to compute all possible metrics based on the structure of the provided dataset:

# Load QA pairs for evaluation
qa_pairs = [
    QandA(question="What is Elasticsearch?", answers=["doc1"]),
    # ... more QA pairs
]

# Calculate all metrics
results = evaluator.calculate(qa_pairs)

# Output results
print(result.to_markdown())

This step involves a comprehensive evaluation of search performance using the provided question-answer pairs. The .calculate() method computes all metrics that can be derived from the dataset's structure.

License

elasticsearch-ir-evaluator is available under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

elasticsearch_ir_evaluator-0.3.1.tar.gz (15.1 kB view details)

Uploaded Source

Built Distribution

elasticsearch_ir_evaluator-0.3.1-py3-none-any.whl (15.0 kB view details)

Uploaded Python 3

File details

Details for the file elasticsearch_ir_evaluator-0.3.1.tar.gz.

File metadata

File hashes

Hashes for elasticsearch_ir_evaluator-0.3.1.tar.gz
Algorithm Hash digest
SHA256 124608500eff5ca308449f9b5973e6f0ad5097a0aca92933c160d2116f58d28b
MD5 f1e71e9396a1952004be627d89019258
BLAKE2b-256 3fbfa36769d89242c3a5d122389aebd5e7db6e713cc57dda5d344653f147c327

See more details on using hashes here.

File details

Details for the file elasticsearch_ir_evaluator-0.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for elasticsearch_ir_evaluator-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ac8fbdfb7b877c53a60aa13838f2df63215fe9b21f390686bb35b49bbe1c266e
MD5 e9a7ffc07a576283b270981c45116fa2
BLAKE2b-256 0fd243e31057b8cf3a840ba24bb9620ad86631d2db65430b3815d0ae30dae36e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page