Skip to main content

EdgeQL Query Builder

Project description

Python 3.10+ Tests Maintainability Rating Coverage

EdgeQL Query Builder

Query builder for EdgeDB

Description

  • Project currently in pre-alpha status. It is not production-ready yet, and It may be buggy and unstable as well.
  • The project is not affiliated with the official developers of EdgeDB.
  • This project only supports a small part of the EdgeDB syntax.
  • The library does not contain any code to connect to the database or to execute queries.
  • The library does not introspect the database and will not check if you made a typo somewhere in a column name. What you write is what you get.
  • Minimal required version of python is 3.10. Not sure if I'll ever do a backport.
  • There is no external dependencies, even on EdgeDB itself.

Usage examples

Many examples of queries are given in the documentation directory.

from edgeql_qb import EdgeDBModel
from edgeql_qb.types import int16
from edgedb.blocking_client import create_client


client = create_client()
Movie = EdgeDBModel('Movie')
Person = EdgeDBModel('Person')

insert = Movie.insert.values(
    title='Blade Runner 2049',
    year=int16(2017),
    director=(
        Person.select()
        .where(Person.c.id == director_id)
        .limit1
    ),
    actors=Person.insert.values(
        first_name='Harrison',
        last_name='Ford',
    ),
).build()


select = (
    Movie.select(
        Movie.c.title,
        Movie.c.year,
        Movie.c.director(
            Movie.c.director.first_name,
            Movie.c.director.last_name,
        ),
        Movie.c.actors(
            Movie.c.actors.first_name,
            Movie.c.actors.last_name,
        ),
    )
    .where(Movie.c.title == 'Blade Runner 2049')
    .build()
)

delete = Movie.delete.where(Movie.c.title == 'Blade Runner 2049').build()

decade = (Movie.c.year // 10).label('decade')
group = Movie.group().using(decade).by(decade).build()

client.query(insert.query, **insert.context)
result = client.query(select.query, **select.context)

movies_by_decade = client.query(group.query, **group.context)

client.query(delete.query, **delete.context)

Status

  • Queries:

  • Types:

    • type casts
    • cal::date_duration
    • cal::relative_duration
    • std::array
    • std::json
    • std::range
    • std::set
    • std::tuple
    • cal::local_date
    • cal::local_date
    • cal::local_datetime
    • cal::local_time
    • std::bigint
    • std::bool
    • std::bytes
    • std::datetime
    • std::decimal
    • std::duration
    • std::float32
    • std::float64
    • std::int16
    • std::int32
    • std::int64
    • std::str
    • std::uuid
  • Functions

    • cal
    • math
    • std
    • sys

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

elgeql_qb-0.4.1.tar.gz (17.9 kB view details)

Uploaded Source

Built Distribution

elgeql_qb-0.4.1-py3-none-any.whl (23.4 kB view details)

Uploaded Python 3

File details

Details for the file elgeql_qb-0.4.1.tar.gz.

File metadata

  • Download URL: elgeql_qb-0.4.1.tar.gz
  • Upload date:
  • Size: 17.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.11 CPython/3.10.6 Linux/5.15.0-53-generic

File hashes

Hashes for elgeql_qb-0.4.1.tar.gz
Algorithm Hash digest
SHA256 83e49f1d4621d8fe719d3586d5038968913dd27540058d244b9aa4697a3f56e1
MD5 d634e9cd7cc4f8c3192b26a5b3592b35
BLAKE2b-256 821ac22ee51ec74bf3ff13254dbf92059becc9ff50afd102498f5d1efeba603f

See more details on using hashes here.

File details

Details for the file elgeql_qb-0.4.1-py3-none-any.whl.

File metadata

  • Download URL: elgeql_qb-0.4.1-py3-none-any.whl
  • Upload date:
  • Size: 23.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.11 CPython/3.10.6 Linux/5.15.0-53-generic

File hashes

Hashes for elgeql_qb-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b4302af46c35073e7e183229c1dcc68917d8730ba1ee767adfd7bb4f59bcbece
MD5 9666e9a4b87ab90cb2f6878b63afd6ec
BLAKE2b-256 4bd22010009b91e86fef03d86a07c8349532d22c356db21bf7b3aeed244427fc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page