Skip to main content

Elphem: Calculating electron-phonon interactions with the empty lattice.

Project description

elphem

Upload Python Package Python package PyPI - Python Version PyPI - Version Downloads GitHub

Electron-Phonon Interactions with Empty Lattice

Installation

From PyPI

pip install elphem

From GitHub

git clone git@github.com:cohsh/elphem.git
cd elphem
pip install -e .

Features

Currently, Elphem allows calculations of

  • direct and reciprocal lattice vectors from lattice constants with optimization.
  • electronic structures with empty lattice approximation.
  • phonon dispersion relations with Debye model.
  • first-order electron-phonon interactions with
    • Bloch coupling constants.
    • Nordheim coupling constants.
    • Bardeen coupling constants.
  • one-electron self-energies.
  • spectral functions.

Examples

Calculation of spectral functions (examples/spectrum.py)

spectrum

"""Example: bcc-Li"""
import numpy as np
import matplotlib.pyplot as plt
from elphem import *

def main():
    # Parameters of lattice
    a = 2.98 * Length.ANGSTROM['->']

    # Parameters of electron
    n_electrons = 1
    n_bands_electron = 4

    # Parameters of phonon
    debye_temperature = 344.0
    n_q = [6, 6, 6]
    
    # Parameters of k-path
    k_names = ["G", "H", "N", "G", "P", "H"]
    n_split = 50
    
    # Parameters of electron-phonon
    temperature = 300.0
    n_bands_elph = 4

    # Generate a lattice
    lattice = Lattice3D('bcc', 'Li', a)

    # Get k-path
    k_path = lattice.get_k_path(k_names, n_split)

    # Generate an electron.
    electron = Electron.create_from_path(lattice, n_electrons, n_bands_electron, k_path)

    # Generate a phonon.
    phonon = Phonon.create_from_n(lattice, debye_temperature, n_q)

    # Generate electron-phonon
    electron_phonon = ElectronPhonon(electron, phonon, temperature, n_bands_elph, eta=0.05)

    # Set frequencies
    n_omega = 200
    range_omega = [-6 * Energy.EV["->"], 20 * Energy.EV["->"]]
    omega_array = np.linspace(range_omega[0] , range_omega[1], n_omega)
    
    # Calculate a spectral function
    spectrum = electron_phonon.calculate_spectrum_over_range(omega_array, normalize=True)
    
    y, x = np.meshgrid(omega_array, k_path.minor_scales)

    fig = plt.figure()
    ax = fig.add_subplot(111)
    
    mappable = ax.pcolormesh(x, y * Energy.EV["<-"], spectrum / Energy.EV["<-"])
    
    for x0 in k_path.major_scales:
        ax.axvline(x=x0, color="black", linewidth=0.3)
    
    ax.set_xticks(k_path.major_scales)
    ax.set_xticklabels(k_names)
    
    ax.set_ylabel("Energy ($\mathrm{eV}$)")
    ax.set_title("Spectral function of bcc-Li (Normalized)")
    
    fig.colorbar(mappable, ax=ax)
    mappable.set_clim(0.00, 0.02)

    fig.savefig("spectrum.png")

if __name__ == "__main__":
    main()

Calculation of the electron-phonon renormalization (EPR) (examples/epr.py)

epr

"""Example: bcc-Li"""
import numpy as np
import matplotlib.pyplot as plt
from elphem import *

def main():
    # Parameters of lattice
    a = 2.98 * Length.ANGSTROM['->']

    # Parameters of electron
    n_electrons = 1
    n_bands_electron = 20

    # Parameters of phonon
    debye_temperature = 344.0
    n_q = [10, 10, 10]
    
    # Parameters of k-path
    k_names = ["G", "H", "N", "G", "P", "H"]
    n_split = 20
    
    # Parameters of electron-phonon
    temperature = 300.0
    n_bands_elph = 1

    # Generate a lattice
    lattice = Lattice3D('bcc', 'Li', a)

    # Get k-path
    k_path = lattice.get_k_path(k_names, n_split)

    # Generate an electron.
    electron = Electron.create_from_path(lattice, n_electrons, n_bands_electron, k_path)

    # Generate a phonon.
    phonon = Phonon.create_from_n(lattice, debye_temperature, n_q)

    # Generate electron-phonon
    electron_phonon = ElectronPhonon(electron, phonon, temperature, n_bands_elph, eta=0.05)
    
    # Calculate electron-phonon renormalization
    epr = electron_phonon.calculate_electron_phonon_renormalization()
    
    fig = plt.figure()
    ax = fig.add_subplot(111)
    
    for i in range(n_bands_elph):
        ax.plot(k_path.minor_scales, electron.eigenenergies[i] * Energy.EV["<-"], color='tab:blue', label='w/o EPR')
        ax.plot(k_path.minor_scales, (electron.eigenenergies[i] + epr[i]) * Energy.EV["<-"], color='tab:orange', label='w/ EPR')
    
    for x0 in k_path.major_scales:
        ax.axvline(x=x0, color="black", linewidth=0.3)

    ax.legend()
    
    ax.set_xticks(k_path.major_scales)
    ax.set_xticklabels(k_names)
    
    ax.set_ylabel("Energy ($\mathrm{eV}$)")
    ax.set_title("EPR of bcc-Li ($T=300~\mathrm{K}$)")

    fig.savefig("epr.png")

if __name__ == "__main__":
    main()

Calculation of the electronic band structure (examples/band_structure.py)

band structure

"""Example: bcc-Li"""
import matplotlib.pyplot as plt
from elphem import *

def main():
    a = 2.98 * Length.ANGSTROM['->']
    n_electrons = 1
    n_bands = 20

    lattice = Lattice3D('bcc', 'Li', a)
    k_names = ["G", "H", "N", "G", "P", "H"]
    
    k_path = lattice.reciprocal.get_path(k_names, 100)

    electron = Electron.create_from_path(lattice, n_electrons, n_bands, k_path)

    eigenenergies = electron.eigenenergies * Energy.EV['<-']

    fig, ax = plt.subplots()
    for band in eigenenergies:
        ax.plot(k_path.minor_scales, band, color="tab:blue")
    
    y_range = [-10, 50]
    
    ax.vlines(k_path.major_scales, ymin=y_range[0], ymax=y_range[1], color="black", linewidth=0.3)
    ax.set_xticks(k_path.major_scales)
    ax.set_xticklabels(k_names)
    ax.set_ylabel("Energy ($\mathrm{eV}$)")
    ax.set_ylim(y_range)

    fig.savefig("band_structure.png")

if __name__ == "__main__":
    main()

Calculation of the phonon dispersion (examples/phonon_dispersion.py)

phonon dispersion

"""Example: bcc-Li"""
import matplotlib.pyplot as plt
from elphem import *

def main():
    a = 2.98 * Length.ANGSTROM["->"]
    lattice = Lattice3D('bcc', 'Li', a)

    q_names = ["G", "H", "N", "G", "P", "H"]
    q_path = lattice.reciprocal.get_path(q_names, 40)

    debye_temperature = 344.0
    phonon = Phonon.create_from_path(lattice, debye_temperature, q_path)
    
    omega = phonon.eigenenergies
    
    fig, ax = plt.subplots()

    ax.plot(q_path.minor_scales, omega * Energy.EV["<-"] * 1.0e+3, color="tab:blue")
    
    for q0 in q_path.major_scales:
        ax.axvline(x=q0, color="black", linewidth=0.3)
    
    ax.set_xticks(q_path.major_scales)
    ax.set_xticklabels(q_names)
    ax.set_ylabel("Energy ($\mathrm{meV}$)")

    fig.savefig("phonon_dispersion.png")

if __name__ == "__main__":
    main()

License

MIT

Author

Kohei Ishii (The University of Tokyo, Japan)

https://cohsh.github.io

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

elphem-0.3.2.tar.gz (23.5 kB view details)

Uploaded Source

Built Distribution

elphem-0.3.2-py3-none-any.whl (29.9 kB view details)

Uploaded Python 3

File details

Details for the file elphem-0.3.2.tar.gz.

File metadata

  • Download URL: elphem-0.3.2.tar.gz
  • Upload date:
  • Size: 23.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for elphem-0.3.2.tar.gz
Algorithm Hash digest
SHA256 5d8260d34e57d7ab4178e40affca3445a1c9aded6af34930edd5fe936d110352
MD5 6e464009a3502a3ac94c2563bf60d4e0
BLAKE2b-256 cb451431ef9abb76ff42d77b80c66ffeef92cef86ed168701bcda7d071c0b85e

See more details on using hashes here.

File details

Details for the file elphem-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: elphem-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 29.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for elphem-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 bdd260f0305d1f21d8cc01866c118e57778dc805ba1a85143ac3e9b41f55f72e
MD5 49deef807aa0f41bd9d9099f4e73966d
BLAKE2b-256 f8f2f0e242e27f53cd43d092e955a796f9a39d107934ec61484aaab02b0cbc91

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page