Skip to main content

A library to perform automatic speech recognition with huggingface transformers.

Project description

Elpis Core Library

The Core Elpis Library, providing a quick api to :hugs: transformers for automatic-speech-recognition.

You can use the library to:

  • Perform standalone inference using a pretrained HFT model.
  • Fine tune a pretrained ASR model on your own dataset.
  • Generate text and Elan files from inference results for further analysis.

Documentation

Documentation for the library can be be found here.

Dependencies

While we try to be as machine-independant as possible, there are some dependencies you should be aware of when using this library:

  • Processing datasets (elpis.datasets.processing) requires librosa, which depends on having libsndfile installed on your computer. If you're using elpis within a docker container, you may have to manually install libsndfile.
  • Transcription (elpis.transcription.transcribe) requires ffmpeg if your audio you're attempting to transcribe needs to be resampled before it can be used. The default sample rate we assume is 16khz.
  • The preprocessing flow (elpis.datasets.preprocessing) is free of external dependencies.

Installation

You can install the elpis library with: pip3 install elpis

Usage

Below are some typical examples of use cases

Standalone Inference

from pathlib import Path

from elpis.transcriber.results import build_text
from elpis.transcriber.transcribe import build_pipeline, transcribe

# Perform inference
asr = build_pipeline(pretrained_location="facebook/wav2vec2-base-960h")
audio = Path("<to_some_audio_file.wav>")
annotations = transcribe(audio, asr) # Timed, per word annotation data

result = build_text(annotations) # Combine annotations to extract all text
print(result)

# Build output files
text_file = output_dir / "test.txt"
with open(text_file, "w") as output_file:
    output_file.write(result)

Fine-tuning a Pretrained Model on Local Dataset

from pathlib import Path
from typing import List

from elpis.datasets import Dataset
from elpis.datasets.dataset import CleaningOptions
from elpis.datasets.preprocessing import process_batch
from elpis.models import ElanOptions, ElanTierSelector
from elpis.trainer.job import TrainingJob, TrainingOptions
from elpis.trainer.trainer import train
from elpis.transcriber.results import build_elan, build_text
from elpis.transcriber.transcribe import build_pipeline, transcribe

files: List[Path] = [...] # A list of paths to the files to include.

dataset = Dataset(
    name="dataset",
    files=files,
    cleaning_options=CleaningOptions(), # Default cleaning options
    # Elan data extraction info- required if dataset includes .eaf files.
    elan_options=ElanOptions(
        selection_mechanism=ElanTierSelector.NAME, selection_value="Phrase"
    ),
)

# Setup
tmp_path = Path('...')

dataset_dir = tmp_path / "dataset"
model_dir = tmp_path / "model"
output_dir = tmp_path / "output"

# Make all directories
for directory in dataset_dir, model_dir, output_dir:
    directory.mkdir(exist_ok=True, parents=True)

# Preprocessing
batches = dataset.to_batches()
for batch in batches:
    process_batch(batch, dataset_dir)

# Train the model
job = TrainingJob(
    model_name="some_model",
    dataset_name="some_dataset",
    options=TrainingOptions(epochs=2, learning_rate=0.001),
    base_model="facebook/wav2vec2-base-960h"
)
train(
    job=job,
    output_dir=model_dir,
    dataset_dir=dataset_dir,
)

# Perform inference with pipeline
asr = build_pipeline(
    pretrained_location=str(model_dir.absolute()),
)
audio = Path("<to_some_audio_file.wav>")
annotations = transcribe(audio, asr)

# Build output files
text_file = output_dir / "test.txt"
with open(text_file, "w") as output_file:
    output_file.write(build_text(annotations))

elan_file = output_dir / "test.eaf"
eaf = build_elan(annotations)
eaf.to_file(str(elan_file))

print('voila ;)')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

elpis-0.1.5.tar.gz (15.7 kB view details)

Uploaded Source

Built Distribution

elpis-0.1.5-py3-none-any.whl (18.8 kB view details)

Uploaded Python 3

File details

Details for the file elpis-0.1.5.tar.gz.

File metadata

  • Download URL: elpis-0.1.5.tar.gz
  • Upload date:
  • Size: 15.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.6 Darwin/21.5.0

File hashes

Hashes for elpis-0.1.5.tar.gz
Algorithm Hash digest
SHA256 e1b98f9848d909f79f2f1452e73e37c2f3598c640fdda044936fb3ca1481a8f2
MD5 bd8e6ea7e989bd587dc21ca36ba6db4a
BLAKE2b-256 3c32a0c2b24a5380984d26341914faf9d2ed08ef6ef29d289ca2b0a4ae105383

See more details on using hashes here.

File details

Details for the file elpis-0.1.5-py3-none-any.whl.

File metadata

  • Download URL: elpis-0.1.5-py3-none-any.whl
  • Upload date:
  • Size: 18.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.6 Darwin/21.5.0

File hashes

Hashes for elpis-0.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 a6b468219220b726d2dcb568abe654734980fd636baea6d25f3573d5fb1c530f
MD5 23debc541e309d3db32f5f8d75911aa7
BLAKE2b-256 61d6529e174953decba565e089a5e4605fc28695059c72814b71094aa22c70af

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page