Skip to main content

A library to perform automatic speech recognition with huggingface transformers.

Project description

Elpis Core Library

The Core Elpis Library, providing a quick api to :hugs: transformers for automatic-speech-recognition.

You can use the library to:

  • Perform standalone inference using a pretrained HFT model.
  • Fine tune a pretrained ASR model on your own dataset.
  • Generate text and Elan files from inference results for further analysis.

Documentation

Documentation for the library can be be found here.

Dependencies

While we try to be as machine-independant as possible, there are some dependencies you should be aware of when using this library:

  • Processing datasets (elpis.datasets.processing) requires librosa, which depends on having libsndfile installed on your computer. If you're using elpis within a docker container, you may have to manually install libsndfile.
  • Transcription (elpis.transcription.transcribe) requires ffmpeg if your audio you're attempting to transcribe needs to be resampled before it can be used. The default sample rate we assume is 16khz.
  • The preprocessing flow (elpis.datasets.preprocessing) is free of external dependencies.

Installation

You can install the elpis library with: pip3 install elpis

Usage

Below are some typical examples of use cases

Standalone Inference

from pathlib import Path

from elpis.transcriber.results import build_text
from elpis.transcriber.transcribe import build_pipeline, transcribe

# Perform inference
asr = build_pipeline(pretrained_location="facebook/wav2vec2-base-960h")
audio = Path("<to_some_audio_file.wav>")
annotations = transcribe(audio, asr) # Timed, per word annotation data

result = build_text(annotations) # Combine annotations to extract all text
print(result)

# Build output files
text_file = output_dir / "test.txt"
with open(text_file, "w") as output_file:
    output_file.write(result)

Fine-tuning a Pretrained Model on Local Dataset

from pathlib import Path
from typing import List

from elpis.datasets import Dataset
from elpis.datasets.dataset import CleaningOptions
from elpis.datasets.preprocessing import process_batch
from elpis.models import ElanOptions, ElanTierSelector
from elpis.trainer.job import TrainingJob, TrainingOptions
from elpis.trainer.trainer import train
from elpis.transcriber.results import build_elan, build_text
from elpis.transcriber.transcribe import build_pipeline, transcribe

files: List[Path] = [...] # A list of paths to the files to include.

dataset = Dataset(
    name="dataset",
    files=files,
    cleaning_options=CleaningOptions(), # Default cleaning options
    # Elan data extraction info- required if dataset includes .eaf files.
    elan_options=ElanOptions(
        selection_mechanism=ElanTierSelector.NAME, selection_value="Phrase"
    ),
)

# Setup
tmp_path = Path('...')

dataset_dir = tmp_path / "dataset"
model_dir = tmp_path / "model"
output_dir = tmp_path / "output"

# Make all directories
for directory in dataset_dir, model_dir, output_dir:
    directory.mkdir(exist_ok=True, parents=True)

# Preprocessing
batches = dataset.to_batches()
for batch in batches:
    process_batch(batch, dataset_dir)

# Train the model
job = TrainingJob(
    model_name="some_model",
    dataset_name="some_dataset",
    options=TrainingOptions(epochs=2, learning_rate=0.001),
    base_model="facebook/wav2vec2-base-960h"
)
train(
    job=job,
    output_dir=model_dir,
    dataset_dir=dataset_dir,
)

# Perform inference with pipeline
asr = build_pipeline(
    pretrained_location=str(model_dir.absolute()),
)
audio = Path("<to_some_audio_file.wav>")
annotations = transcribe(audio, asr)

# Build output files
text_file = output_dir / "test.txt"
with open(text_file, "w") as output_file:
    output_file.write(build_text(annotations))

elan_file = output_dir / "test.eaf"
eaf = build_elan(annotations)
eaf.to_file(str(elan_file))

print('voila ;)')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

elpis-0.1.7.tar.gz (17.7 kB view details)

Uploaded Source

Built Distribution

elpis-0.1.7-py3-none-any.whl (21.8 kB view details)

Uploaded Python 3

File details

Details for the file elpis-0.1.7.tar.gz.

File metadata

  • Download URL: elpis-0.1.7.tar.gz
  • Upload date:
  • Size: 17.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.11 Linux/6.2.0-1011-azure

File hashes

Hashes for elpis-0.1.7.tar.gz
Algorithm Hash digest
SHA256 245cba929c8949dbb97db56fdd98825a53b0505b233d3ed0b621322baeafb227
MD5 576a12910a9341c2053c96571fe2c451
BLAKE2b-256 99f756fea1d34f2bc84addc05cda63167dc8a424b04a017ff40c91fda2b330eb

See more details on using hashes here.

File details

Details for the file elpis-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: elpis-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 21.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.10.11 Linux/6.2.0-1011-azure

File hashes

Hashes for elpis-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 310dbcebc3087e812501e384491bcdda84fa927477dbf328272983b11ae29429
MD5 23e935a084032a93ee964d81d585ae9c
BLAKE2b-256 854e0ad6a11610fbcd13a430e058b27f94bf73a86e6071e37988ef4cac9f6e36

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page