API for FDEM inversion and data manipulation
Project description
EMagPy
Python API for inversion/modelling of frequency domain electromagnetic data (FDEM).
EMagPy is divided into a python API and a standalone graphical user interface (GUI). It aims to be a powerfull but simple tool for inverting EMI data obtain from conductimeter.
Getting started
Clone the repository:
git clone https://gitlab.com/hkex/emagpy
Change to the src
directory and run ui.py
to start the GUI.
cd emgapy/src
python ui.py # this will start the GUI
The python API is available by simply importing the emagpy
module from the python shell:
import emagpy
k = Problem()
k.createSurvey('./test/coverCrop.csv')
k.invert(forwardModel='CS') # specify the forward model (here the Cumulative Sensitivty of McNeil1980)
k.showResults() # display the section
k.showMisfit() # display predicted and observed apparent EC
k.showOne2one() # 1:1 line of misfit of apparent EC
Check out the jupyter notebook examples in emagpy/examples/
.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
emagpy-0.0.4.tar.gz
(35.1 kB
view details)
Built Distribution
emagpy-0.0.4-py3-none-any.whl
(49.9 kB
view details)
File details
Details for the file emagpy-0.0.4.tar.gz
.
File metadata
- Download URL: emagpy-0.0.4.tar.gz
- Upload date:
- Size: 35.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0147e41afca42815b2346f20549c5838f0b131f2f333bb21cc03b20d301ce03c |
|
MD5 | 17f5e046867d49a4f01d868e5f69cc02 |
|
BLAKE2b-256 | 8909a8b6f2050125e5b163fe572e9c6ed46a0cb7703a98c872c17084e13226ef |
File details
Details for the file emagpy-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: emagpy-0.0.4-py3-none-any.whl
- Upload date:
- Size: 49.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.28.1 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 13171f41179c009a514e52a3733716a66205afacc9f2e6ef8d3e909cbaf0cef2 |
|
MD5 | e5cabcfb7aefb81c04fc431c3a3bcd43 |
|
BLAKE2b-256 | 16ed49d3d460171b364d54b57082ba922dd6efc57bcb9e2f0dab4532739b0ae4 |