API for FDEM inversion and data manipulation
Project description
EMagPy
Python API for inversion/modelling of frequency domain electromagnetic data (FDEM).
EMagPy is divided into a python API and a standalone graphical user interface (GUI). It aims to be a powerfull but simple tool for inverting EMI data obtain from conductimeter.
Getting started
Clone the repository:
git clone https://gitlab.com/hkex/emagpy
Change to the src
directory and run ui.py
to start the GUI.
cd emgapy/src
python ui.py # this will start the GUI
The python API is available by simply importing the emagpy
module from the python shell:
import emagpy
k = Problem()
k.createSurvey('./test/coverCrop.csv')
k.invert(forwardModel='CS') # specify the forward model (here the Cumulative Sensitivty of McNeil1980)
k.showResults() # display the section
k.showMisfit() # display predicted and observed apparent EC
k.showOne2one() # 1:1 line of misfit of apparent EC
Check out the jupyter notebook examples in emagpy/examples/
.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
emagpy-1.2.1.tar.gz
(5.5 MB
view details)
Built Distribution
emagpy-1.2.1-py3-none-any.whl
(218.3 kB
view details)
File details
Details for the file emagpy-1.2.1.tar.gz
.
File metadata
- Download URL: emagpy-1.2.1.tar.gz
- Upload date:
- Size: 5.5 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 51e30f91aa0a244a2243dd8d097f031953551530f329d132534fea31e6245906 |
|
MD5 | dc8fddded83897f9fff9d6285377dac3 |
|
BLAKE2b-256 | 4e23cf93568aa83eed3dc742b5b11b64e63b991c97999ff19fcaffea3b70811e |
File details
Details for the file emagpy-1.2.1-py3-none-any.whl
.
File metadata
- Download URL: emagpy-1.2.1-py3-none-any.whl
- Upload date:
- Size: 218.3 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5b9e58343d51b2ba02a7a930c860b072cd89644e06e4df9077f3a378e9fc8d79 |
|
MD5 | 094b7fd08c8c8cb43c23f2588c77e3d5 |
|
BLAKE2b-256 | 9173ad77b409d82c7522b88ffcbc65966cf3321691b2b2deeceda2b6620a1332 |