Skip to main content

eMaTe can run in both CPU and GPU and can estimate the spectral density and related trace functions, such as entropy and Estrada index, even in matrices (directed or undirected graphs) with million of nodes.

Project description

eMaTe

eMaTe it is a python package which the main goal is to provide methods capable of estimating the spectral densities and trace functions of large sparse matrices. eMaTe can run in both CPU and GPU and can estimate the spectral density and related trace functions, such as entropy and Estrada index, even in directed or undirected networks with million of nodes.

Install

pip install emate

If you a have a GPU you should also install cupy.

Kernel Polynomial Method (KPM)

The Kernel Polynomial Method can estimate the spectral density of large sparse Hermitan matrices with a computational cost almost linear. This method combines three key ingredients: the Chebyshev expansion + the stochastic trace estimator + kernel smoothing.

Example

import networkx as nx
import numpy as np

n = 3000
g = nx.erdos_renyi_graph(n , 3/n)
W = nx.adjacency_matrix(g)

vals  = np.linalg.eigvals(W.todense()).real
from emate.hermitian import tfkpm


num_moments = 40
num_vecs = 40
extra_points = 10
ek, rho = tfkpm(W, num_moments, num_vecs, extra_points)
import matplotlib.pyplot as plt
plt.hist(vals, density=True, bins=100, alpha=.9, color="steelblue")
plt.scatter(ek, rho, c="tomato", zorder=999, alpha=0.9, marker="d")

If the CUPY package it is available in your machine, you can also use the cupy implementation. When compared to tf-kpm, the Cupy-kpm is slower for median matrices (100k) and faster for larger matrices (> 10^6). The main reason it's because the tf-kpm was implemented in order to calc all te moments in a single step.

import matplotlib.pyplot as plt
from emate.hermitian import cupykpm

num_moments = 40
num_vecs = 40
extra_points = 10
ek, rho = cupykpm(W.tocsr(), num_moments, num_vecs, extra_points)
plt.hist(vals, density=True, bins=100, alpha=.9, color="steelblue")
plt.scatter(ek.get(), rho.get(), c="tomato", zorder=999, alpha=0.9, marker="d")

Stochastic Lanczos Quadrature (SLQ)

The problem of estimating the trace of matrix functions appears in applications ranging from machine learning and scientific computing, to computational biology.[2]

Example

Computing the Estrada index

from emate.symmetric.slq import pyslq
import tensorflow as tf

def trace_function(eig_vals):
    return tf.exp(eig_vals)

num_vecs = 100
num_steps = 50
approximated_estrada_index, _ = pyslq(L_sparse, num_vecs, num_steps,  trace_function)
exact_estrada_index =  np.sum(np.exp(vals_laplacian))
approximated_estrada_index, exact_estrada_index

The above code returns

(3058.012, 3063.16457163222)

Entropy

import scipy
import scipy.sparse

def entropy(eig_vals):
  s = 0.
  for val in eig_vals:
    if val > 0:
      s += -val*np.log(val)
  return s

L = np.array(G.laplacian(normalized=True), dtype=np.float64)
vals_laplacian = np.linalg.eigvalsh(L).real

exact_entropy =  entropy(vals_laplacian)


def trace_function(eig_vals):
  def entropy(val):
    return tf.cond(val>0, lambda:-val*tf.log(val), lambda: 0.)

  return tf.map_fn(entropy, eig_vals)

L_sparse = scipy.sparse.coo_matrix(L)

num_vecs = 100
num_steps = 50
approximated_entropy, _ = pyslq(L_sparse, num_vecs, num_steps,  trace_function)

approximated_entropy, exact_entropy
(-509.46283, -512.5283224633046)

[1] Hutchinson, M. F. (1990). A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines. Communications in Statistics-Simulation and Computation, 19(2), 433-450.

[2] Ubaru, S., Chen, J., & Saad, Y. (2017). Fast Estimation of tr(f(A)) via Stochastic Lanczos Quadrature. SIAM Journal on Matrix Analysis and Applications, 38(4), 1075-1099.

[3] The Kernel Polynomial Method applied to tight binding systems with time-dependence

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

emate-1.1.3.tar.gz (16.0 kB view details)

Uploaded Source

Built Distribution

emate-1.1.3-py3-none-any.whl (20.6 kB view details)

Uploaded Python 3

File details

Details for the file emate-1.1.3.tar.gz.

File metadata

  • Download URL: emate-1.1.3.tar.gz
  • Upload date:
  • Size: 16.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.3

File hashes

Hashes for emate-1.1.3.tar.gz
Algorithm Hash digest
SHA256 abf6d9446016b280e47c6eff78c23e0480fec751731cce64aec034401fe18b88
MD5 4efd169067986a7cf5b406cf1d6d9813
BLAKE2b-256 a69d9b02d2f77ad42faa6db483c57960d1c500d20478d466aec5920b11405015

See more details on using hashes here.

File details

Details for the file emate-1.1.3-py3-none-any.whl.

File metadata

  • Download URL: emate-1.1.3-py3-none-any.whl
  • Upload date:
  • Size: 20.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.1.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.3

File hashes

Hashes for emate-1.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 9f61bacd854c4aa835a66d5499810fdd0514131528c95117ae6050acbc453f00
MD5 80668fb0fbc3975f6f7faa040bd15406
BLAKE2b-256 112f2f137aa411d542d9070ee6f7bf448500605f2a0f26ba23f7f29bfcfe10e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page