Embedbase + Qdrant - Advanced and high-performant vector similarity search technology in your AI applications.
Project description
embedbase-qdrant
Embedbase + Qdrant Advanced and high-performant vector similarity search technology in your AI applications
⚠️ Status: Alpha release ⚠️
If you have any feedback or issues, please let us know by opening an issue or contacting us on discord.
Please refer to the documentation
Getting started
To install the Embedbase Qdrant library, run the following command:
pip install embedbase-qdrant
Quick tour
Let's try Embedbase + Qdrant with an OpenAI embedder
:
pip install openai uvicorn
import os
import uvicorn
from embedbase import get_app
from embedbase.embedding.openai import Openai
from embedbase_qdrant import Qdrant
# here we use openai to create embeddings and qdrant to store the data
app = get_app().use_embedder(Openai(os.environ["OPENAI_API_KEY"])).use_db(Qdrant()).run()
if __name__ == "__main__":
uvicorn.run(app)
Start a local Qdrant:
docker-compose up -d
Run Embedbase:
python3 main.py
Check out other examples and documentation for more details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file embedbase_qdrant-1.0.1.tar.gz
.
File metadata
- Download URL: embedbase_qdrant-1.0.1.tar.gz
- Upload date:
- Size: 5.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.2 CPython/3.8.16 Linux/5.15.0-1036-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e673a898f25d434e44c299235ec677a26adfbef24e5b0e3b6678c31b87671f4e |
|
MD5 | 7954b3cb883597ded2a4d4737a901636 |
|
BLAKE2b-256 | 71f3d0a0618b7938aa9b21d6911206cae5fa03470e7f4fb8c3f889a7c8dc67e8 |
File details
Details for the file embedbase_qdrant-1.0.1-py3-none-any.whl
.
File metadata
- Download URL: embedbase_qdrant-1.0.1-py3-none-any.whl
- Upload date:
- Size: 5.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.4.2 CPython/3.8.16 Linux/5.15.0-1036-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f0445db8799feb3cb99584845d267e219cccd9ac5277f3bf63dfa50c8b8aeb23 |
|
MD5 | ee3965f3deabc2f1c5326e237f506d04 |
|
BLAKE2b-256 | b39c3f05b3ee392e738373df92abae52446b8362df7b9b39672e9cb8fc1d194c |