Skip to main content

Embedbase + Qdrant - Advanced and high-performant vector similarity search technology in your AI applications.

Project description

embedbase-qdrant

Embedbase + Qdrant Advanced and high-performant vector similarity search technology in your AI applications


⚠️ Status: Alpha release ⚠️

Discord PyPI

If you have any feedback or issues, please let us know by opening an issue or contacting us on discord.

Please refer to the documentation

Getting started

To install the Embedbase Qdrant library, run the following command:

pip install embedbase-qdrant

Quick tour

Let's try Embedbase + Qdrant with an OpenAI embedder:

pip install openai uvicorn
import os
import uvicorn
from embedbase import get_app
from embedbase.embedding.openai import Openai
from embedbase_qdrant import Qdrant

# here we use openai to create embeddings and qdrant to store the data
app = get_app().use_embedder(Openai(os.environ["OPENAI_API_KEY"])).use_db(Qdrant()).run()

if __name__ == "__main__":
    uvicorn.run(app)

Start a local Qdrant:

docker-compose up -d

Run Embedbase:

python3 main.py

pika-1683309528643-1x

Check out other examples and documentation for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

embedbase_qdrant-1.0.1.tar.gz (5.4 kB view details)

Uploaded Source

Built Distribution

embedbase_qdrant-1.0.1-py3-none-any.whl (5.0 kB view details)

Uploaded Python 3

File details

Details for the file embedbase_qdrant-1.0.1.tar.gz.

File metadata

  • Download URL: embedbase_qdrant-1.0.1.tar.gz
  • Upload date:
  • Size: 5.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.8.16 Linux/5.15.0-1036-azure

File hashes

Hashes for embedbase_qdrant-1.0.1.tar.gz
Algorithm Hash digest
SHA256 e673a898f25d434e44c299235ec677a26adfbef24e5b0e3b6678c31b87671f4e
MD5 7954b3cb883597ded2a4d4737a901636
BLAKE2b-256 71f3d0a0618b7938aa9b21d6911206cae5fa03470e7f4fb8c3f889a7c8dc67e8

See more details on using hashes here.

File details

Details for the file embedbase_qdrant-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: embedbase_qdrant-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 5.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.8.16 Linux/5.15.0-1036-azure

File hashes

Hashes for embedbase_qdrant-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f0445db8799feb3cb99584845d267e219cccd9ac5277f3bf63dfa50c8b8aeb23
MD5 ee3965f3deabc2f1c5326e237f506d04
BLAKE2b-256 b39c3f05b3ee392e738373df92abae52446b8362df7b9b39672e9cb8fc1d194c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page