Skip to main content

No project description provided

Project description

Code style: black

Introduction

Implement the sentence embedding retriever with local cache from the embedding store.

Features

  • Embedding store abstraction class

  • Support Jina client implementation embedding store

  • Support LFU, LRU cache eviction policy for limited cache size, if the eviction policy is not specified then won't apply any eviction policy

  • Save the cache to parquet file

  • Load the cache from existed parquet file

Quick Start

Option 1. Using Jina flow serve the embedding model

  • Installation
pip install embestore"[jina]"
  • To start up the Jina flow service with default sentence transformer model sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
embestore serve start-jina
# Take sentence-transformers/all-MiniLM-L6-v2 for example

export SENTENCE_TRANSFORMER=sentence-transformers/all-MiniLM-L6-v2
embestore serve start-jina
  • Retrieve the embedding
from embestore.store.jina import JinaEmbeddingStore

JINA_EMBEDDING_STORE_GRPC = "grpc://0.0.0.0:54321"


query_sentences = ["I want to listen the music.", "Music don't want to listen me."]

jina_embedding_store = JinaEmbeddingStore(embedding_grpc=JINA_EMBEDDING_STORE_GRPC)
embeddings = jina_embedding_store.retrieve_embeddings(sentences=query_sentences)

>>> embeddings
array([[ 2.26917475e-01,  8.17841291e-02,  2.35427842e-02,
        -3.02357599e-02,  1.15757119e-02, -8.42996314e-02,
         4.42815214e-01,  1.80795133e-01,  1.04702041e-01,
         ...
]])
  • Stop the docker container
embestore serve stop-jina

Option 2. Using local sentence embedding model

  • Installation
pip install embestore"[sentence-transformers]"
  • Serve the sentence embedding model sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 by in-memory
from embestore.store.torch import TorchEmbeddingStore

query_sentences = ["I want to listen the music.", "Music don't want to listen me."]


torch_embedding_store = TorchEmbeddingStore()
embeddings = torch_embedding_store.retrieve_embeddings(sentences=query_sentences)

>>> embeddings
array([[ 2.26917475e-01,  8.17841291e-02,  2.35427842e-02,
        -3.02357599e-02,  1.15757119e-02, -8.42996314e-02,
         4.42815214e-01,  1.80795133e-01,  1.04702041e-01,
         ...
]])

Option 3. Inherit from the abstraction class

  • Installation
pip install embestore
from typing import List, Text

import numpy as np
from sentence_transformers import SentenceTransformer

from embestore.store.base import EmbeddingStore

model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2").eval()


class TorchEmbeddingStore(EmbeddingStore):
    def _retrieve_embeddings_from_model(self, sentences: List[Text]) -> np.ndarray:
        return model.encode(sentences)

Save the cache

torch_embedding_store.save("cache.parquet")

Load from the cache

torch_embedding_store = TorchEmbeddingStore("cache.parquet")

Apply eviction policy

  • LRU
torch_embedding_store = TorchEmbeddingStore(max_size=100, eviction_policy="lru")
  • LFU
torch_embedding_store = TorchEmbeddingStore(max_size=100, eviction_policy="lfu")

Road Map

[TODO] Badges

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

embestore-1.0.1.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

embestore-1.0.1-py3-none-any.whl (8.2 kB view details)

Uploaded Python 3

File details

Details for the file embestore-1.0.1.tar.gz.

File metadata

  • Download URL: embestore-1.0.1.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.8.3 requests/2.28.1 setuptools/65.5.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.10

File hashes

Hashes for embestore-1.0.1.tar.gz
Algorithm Hash digest
SHA256 b1ff31cae80666f50aa7d02e14824878bb5443a08b88629edc651e13d042ed0f
MD5 2d448a3e8b6986bb7cf88cb420be3cf7
BLAKE2b-256 eff2320aa96217d39880bffc0a3bb8916ee3e020caf9e9bf7ecdf6c2ad845c46

See more details on using hashes here.

File details

Details for the file embestore-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: embestore-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 8.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.8.3 requests/2.28.1 setuptools/65.5.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.10

File hashes

Hashes for embestore-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 20adf6b5ea108f352fc4a356e1ea3a510b146f3e5928517e73b23b2c34a2ddf4
MD5 bed80d9cf3efb93b4b1b6ee5da94cd6e
BLAKE2b-256 b4f590469f820c55bc157e3a3b92a7f65897a889c183ee253333f43fd77d4d69

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page