No project description provided
Project description
Introduction
Implement the sentence embedding retriever with local cache from the embedding store.
Features
-
Embedding store abstraction class
-
Support Jina client implementation embedding store
-
Support LFU, LRU cache eviction policy for limited cache size, if the eviction policy is not specified then won't apply any eviction policy
-
Save the cache to parquet file
-
Load the cache from existed parquet file
Quick Start
Option 1. Using Jina flow serve the embedding model
- Installation
pip install embestore"[jina]"
- To start up the Jina flow service with default sentence transformer model
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
embestore serve start-jina
- Use other sentence transformer model from hugging face
# Take sentence-transformers/all-MiniLM-L6-v2 for example
export SENTENCE_TRANSFORMER=sentence-transformers/all-MiniLM-L6-v2
embestore serve start-jina
- Retrieve the embedding
from embestore.store.jina import JinaEmbeddingStore
JINA_EMBEDDING_STORE_GRPC = "grpc://0.0.0.0:54321"
query_sentences = ["I want to listen the music.", "Music don't want to listen me."]
jina_embedding_store = JinaEmbeddingStore(embedding_grpc=JINA_EMBEDDING_STORE_GRPC)
embeddings = jina_embedding_store.retrieve_embeddings(sentences=query_sentences)
>>> embeddings
array([[ 2.26917475e-01, 8.17841291e-02, 2.35427842e-02,
-3.02357599e-02, 1.15757119e-02, -8.42996314e-02,
4.42815214e-01, 1.80795133e-01, 1.04702041e-01,
...
]])
- Stop the docker container
embestore serve stop-jina
Option 2. Using local sentence embedding model
- Installation
pip install embestore"[sentence-transformers]"
- Serve the sentence embedding model
sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
by in-memory
from embestore.store.torch import TorchEmbeddingStore
query_sentences = ["I want to listen the music.", "Music don't want to listen me."]
torch_embedding_store = TorchEmbeddingStore()
embeddings = torch_embedding_store.retrieve_embeddings(sentences=query_sentences)
>>> embeddings
array([[ 2.26917475e-01, 8.17841291e-02, 2.35427842e-02,
-3.02357599e-02, 1.15757119e-02, -8.42996314e-02,
4.42815214e-01, 1.80795133e-01, 1.04702041e-01,
...
]])
Option 3. Inherit from the abstraction class
- Installation
pip install embestore
from typing import List, Text
import numpy as np
from sentence_transformers import SentenceTransformer
from embestore.store.base import EmbeddingStore
model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2").eval()
class TorchEmbeddingStore(EmbeddingStore):
def _retrieve_embeddings_from_model(self, sentences: List[Text]) -> np.ndarray:
return model.encode(sentences)
Save the cache
torch_embedding_store.save("cache.parquet")
Load from the cache
torch_embedding_store = TorchEmbeddingStore("cache.parquet")
Apply eviction policy
- LRU
torch_embedding_store = TorchEmbeddingStore(max_size=100, eviction_policy="lru")
- LFU
torch_embedding_store = TorchEmbeddingStore(max_size=100, eviction_policy="lfu")
Road Map
[TODO] Badges
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
embestore-1.0.1.tar.gz
(7.4 kB
view details)
Built Distribution
File details
Details for the file embestore-1.0.1.tar.gz
.
File metadata
- Download URL: embestore-1.0.1.tar.gz
- Upload date:
- Size: 7.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.8.3 requests/2.28.1 setuptools/65.5.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b1ff31cae80666f50aa7d02e14824878bb5443a08b88629edc651e13d042ed0f |
|
MD5 | 2d448a3e8b6986bb7cf88cb420be3cf7 |
|
BLAKE2b-256 | eff2320aa96217d39880bffc0a3bb8916ee3e020caf9e9bf7ecdf6c2ad845c46 |
File details
Details for the file embestore-1.0.1-py3-none-any.whl
.
File metadata
- Download URL: embestore-1.0.1-py3-none-any.whl
- Upload date:
- Size: 8.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.8.3 requests/2.28.1 setuptools/65.5.1 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 20adf6b5ea108f352fc4a356e1ea3a510b146f3e5928517e73b23b2c34a2ddf4 |
|
MD5 | bed80d9cf3efb93b4b1b6ee5da94cd6e |
|
BLAKE2b-256 | b4f590469f820c55bc157e3a3b92a7f65897a889c183ee253333f43fd77d4d69 |