Skip to main content

Just a bunch of useful embeddings to get started quickly.

Project description

embetter

"Just a bunch of useful embeddings to get started quickly."


Embetter implements scikit-learn compatible embeddings for computer vision and text. It should make it very easy to quickly build proof of concepts using scikit-learn pipelines and, in particular, should help with bulk labelling. It's also meant to play nice with bulk and scikit-partial but it can also be used together with your favorite ANN solution like lancedb.

Install

You can install via pip.

python -m pip install embetter

Many of the embeddings are optional depending on your use-case, so if you want to nit-pick to download only the tools that you need:

python -m pip install "embetter[text]"
python -m pip install "embetter[spacy]"
python -m pip install "embetter[sense2vec]"
python -m pip install "embetter[gensim]"
python -m pip install "embetter[bpemb]"
python -m pip install "embetter[vision]"
python -m pip install "embetter[all]"

API Design

This is what's being implemented now.

# Helpers to grab text or image from pandas column.
from embetter.grab import ColumnGrabber

# Representations/Helpers for computer vision
from embetter.vision import ImageLoader, TimmEncoder, ColorHistogramEncoder

# Representations for text
from embetter.text import SentenceEncoder, MatryoshkaEncoder, Sense2VecEncoder, BytePairEncoder, spaCyEncoder, GensimEncoder

# Representations from multi-modal models
from embetter.multi import ClipEncoder

# Finetuning components 
from embetter.finetune import FeedForwardTuner, ContrastiveTuner, ContrastiveLearner, SbertLearner

# External embedding providers, typically needs an API key
from embetter.external import CohereEncoder, OpenAIEncoder

All of these components are scikit-learn compatible, which means that you can apply them as you would normally in a scikit-learn pipeline. Just be aware that these components are stateless. They won't require training as these are all pretrained tools.

Text Example

import pandas as pd
from sklearn.pipeline import make_pipeline 
from sklearn.linear_model import LogisticRegression

from embetter.grab import ColumnGrabber
from embetter.text import SentenceEncoder

# This pipeline grabs the `text` column from a dataframe
# which then get fed into Sentence-Transformers' all-MiniLM-L6-v2.
text_emb_pipeline = make_pipeline(
  ColumnGrabber("text"),
  SentenceEncoder('all-MiniLM-L6-v2')
)

# This pipeline can also be trained to make predictions, using
# the embedded features. 
text_clf_pipeline = make_pipeline(
  text_emb_pipeline,
  LogisticRegression()
)

dataf = pd.DataFrame({
  "text": ["positive sentiment", "super negative"],
  "label_col": ["pos", "neg"]
})
X = text_emb_pipeline.fit_transform(dataf, dataf['label_col'])
text_clf_pipeline.fit(dataf, dataf['label_col']).predict(dataf)

Image Example

The goal of the API is to allow pipelines like this:

import pandas as pd
from sklearn.pipeline import make_pipeline 
from sklearn.linear_model import LogisticRegression

from embetter.grab import ColumnGrabber
from embetter.vision import ImageLoader
from embetter.multi import ClipEncoder

# This pipeline grabs the `img_path` column from a dataframe
# then it grabs the image paths and turns them into `PIL.Image` objects
# which then get fed into CLIP which can also handle images.
image_emb_pipeline = make_pipeline(
  ColumnGrabber("img_path"),
  ImageLoader(convert="RGB"),
  ClipEncoder()
)

dataf = pd.DataFrame({
  "img_path": ["tests/data/thiscatdoesnotexist.jpeg"]
})
image_emb_pipeline.fit_transform(dataf)

Batched Learning

All of the encoding tools you've seen here are also compatible with the partial_fit mechanic in scikit-learn. That means you can leverage scikit-partial to build pipelines that can handle out-of-core datasets.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

embetter-0.6.4.tar.gz (25.0 kB view details)

Uploaded Source

Built Distribution

embetter-0.6.4-py2.py3-none-any.whl (37.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file embetter-0.6.4.tar.gz.

File metadata

  • Download URL: embetter-0.6.4.tar.gz
  • Upload date:
  • Size: 25.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.1

File hashes

Hashes for embetter-0.6.4.tar.gz
Algorithm Hash digest
SHA256 f6d2d10b81e96d7cd4fab610e7ad2b298107fa60c4aa88baef46f657a54342ff
MD5 d2e6c93db96aecddf8ada430e2c540c6
BLAKE2b-256 e4dcfb2a1b8ae7add9d900934c0ad58080e9887a2c3e99657167be29425c5098

See more details on using hashes here.

File details

Details for the file embetter-0.6.4-py2.py3-none-any.whl.

File metadata

  • Download URL: embetter-0.6.4-py2.py3-none-any.whl
  • Upload date:
  • Size: 37.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.1

File hashes

Hashes for embetter-0.6.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 fbc9683a20a4ddee033b2a2a00395e842aed85f3a183651b4fbf7b6904a4a1d3
MD5 ef8664cf57cdec54f84b8e86bf52cf69
BLAKE2b-256 b3da5eb18b77ca8b9e0d0ddafac2e280e0f3d4e76f7a08fc4cd4f33cb63a7a3e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page