Skip to main content

Empirical Mode Decomposition

Project description

A python package for Empirical Mode Decomposition and related spectral analyses.

Please note that this project is in active development for the moment - the API may change relatively quickly between releases!

Installation

You can install the latest stable release from the PyPI repository

pip install emd

or clone and install the source code.

git clone https://gitlab.com/emd-dev/emd.git
cd emd
pip install .

Requirements are specified in requirements.txt. Main functionality only depends on numpy and scipy for computation and matplotlib for visualisation.

Quick Start

Full documentation can be found at https://emd.readthedocs.org and development/issue tracking at gitlab.com/emd-dev/emd

Import emd

import emd

Define a simulated waveform containing a non-linear wave at 5Hz and a sinusoid at 1Hz.

sample_rate = 1000
seconds = 10
num_samples = sample_rate*seconds

import numpy as np
time_vect = np.linspace(0, seconds, num_samples)

freq = 5
nonlinearity_deg = .25  # change extent of deformation from sinusoidal shape [-1 to 1]
nonlinearity_phi = -np.pi/4  # change left-right skew of deformation [-pi to pi]
x = emd.simulate.abreu2010(freq, nonlinearity_deg, nonlinearity_phi, sample_rate, seconds)
x += np.cos(2*np.pi*1*time_vect)

Estimate IMFs

imf = emd.sift.sift(x)

Compute instantaneous frequency, phase and amplitude using the Normalised Hilbert Transform Method.

IP, IF, IA = emd.spectra.frequency_transform(imf, sample_rate, 'hilbert')

Compute Hilbert-Huang spectrum

freq_range = (0, 10, 100)  # 0 to 10Hz in 100 steps
f, hht = emd.spectra.hilberthuang(IF, IA, freq_range, sum_time=False)
Make a summary plot

```python
import matplotlib.pyplot as plt
plt.figure(figsize=(16, 8))
plt.subplot(211, frameon=False)
plt.plot(time_vect, x, 'k')
plt.plot(time_vect, imf[:, 0]-4, 'r')
plt.plot(time_vect, imf[:, 1]-8, 'g')
plt.plot(time_vect, imf[:, 2]-12, 'b')
plt.xlim(time_vect[0], time_vect[-1])
plt.grid(True)
plt.subplot(212)
plt.pcolormesh(time_vect, f, hht, cmap='ocean_r')
plt.ylabel('Frequency (Hz)')
plt.xlabel('Time (secs)')
plt.grid(True)
plt.show()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

emd-0.7.0.tar.gz (82.5 kB view details)

Uploaded Source

Built Distribution

emd-0.7.0-py2.py3-none-any.whl (85.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file emd-0.7.0.tar.gz.

File metadata

  • Download URL: emd-0.7.0.tar.gz
  • Upload date:
  • Size: 82.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for emd-0.7.0.tar.gz
Algorithm Hash digest
SHA256 8fa9a1e7247aed0dc144633b1b2f2a8054f729a6d10ff7c8129321682bd18447
MD5 054032777e321072fb75fb7d76f7d353
BLAKE2b-256 8b469b8a5e6a050783878e98d61fa093683cb640cea055883caf5d10885798b0

See more details on using hashes here.

File details

Details for the file emd-0.7.0-py2.py3-none-any.whl.

File metadata

  • Download URL: emd-0.7.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 85.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for emd-0.7.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 e9c1c9fba444f51438f20e5a70f6f1ac880c2ecd7aae84bd2f5a9e7f4ad0465a
MD5 3a48d0590a8e5ecb504ddcce8f635def
BLAKE2b-256 056ca72629410a7a987d9612347a09215116df652a0c34df1a7fd358e81db9f5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page