Empirical Mode Decomposition, EMD
Project description
Empirical Mode Decomposition, EMD
Installation
pip install emdpy-z
Quick Start
# Import
from emdpy.emd import *
import numpy as np
# Input
t = np.linspace(0, 1, 1000)
modes = np.sin(2 * np.pi * 5 * t) + np.sin(2 * np.pi * 10 * t)
y = modes + t
x, y = t, y
# EMD
imfs, res, (mean, std) = emd(x, y, mode=0, ps=len(x), max_iter_num = 20)
# Plot the figs
plot_imfs(imfs, res, col=1)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
emdpy_z-0.0.3.tar.gz
(9.6 kB
view details)
Built Distribution
emdpy_z-0.0.3-py3-none-any.whl
(13.1 kB
view details)
File details
Details for the file emdpy_z-0.0.3.tar.gz
.
File metadata
- Download URL: emdpy_z-0.0.3.tar.gz
- Upload date:
- Size: 9.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b91d337c071515d97f144b2ef32b7f5f43972a64c85f6b8425d76a4b36519cb2 |
|
MD5 | fa08308419e14ee7ed85bdf485b030f4 |
|
BLAKE2b-256 | 1e2994b35433be5c3c95d5c7d390e269a5688b967347d3fc97868e7e8a3f6db3 |
File details
Details for the file emdpy_z-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: emdpy_z-0.0.3-py3-none-any.whl
- Upload date:
- Size: 13.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a34e082314de5de3d80dcea559fc8ba2c3c884bcd1377b9ea02334da273de007 |
|
MD5 | 5b94d1e38b57ee65a9372fd1214b5c8e |
|
BLAKE2b-256 | 3fcc3317c8517ae568e8c890b9096af8b1c23bed11ef30421b50abe305d5b393 |