Skip to main content

An off-the-rack NLP sentiment classifier- upload your own corpus or use the pre-installed ones

Project description

# empathyMachines > A standalone NLP sentiment classifier you can import as a module

## Purposes

1. Offer a batteries-included NLP classifier you can use either on it’s own, or to make sentiment predictions as part of a broder NLP project (for example, when classifying customer messages, whether the customer is angry or not might help you determine if this is a compensation request, or a request to adjust their address.) 1. Have the entire sentiment prediction process scaffolded so you can feed in your own training corpus, and easily train an NLP sentiment classifier.

## How to use

1. Download the repo from GitHub (pip install coming later) 1. cd into repo, and pip install -r requirements.txt 1. In your Python code, from EmpathyMachines import EmpathyMachines 1. nlp_classifier = EmpathyMachines() 1. nlp_classifier.train(corpus=’Twitter’) 1. nlp_classifier.predict(text_string)

### Corpora included

### Include your own corpus (UNDER CONSTRUCTION)

Feel free to train a classifier on your own corpus!

Two ways to do this: 1. Read in a .csv file with header row containing “sentiment”, “text”, and optionally, “confidence” 1. Pass in an array of Python dictionaries, with attributes for “sentiment”, “text”, and optionally, “confidence”

1. Create a .csv file with the following fields 1. nlp_classifier.train(corpus=’custom’, corpus_path=’path/to/custom/corpus.csv’, analytics_output=False)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

empathy-machines-0.5.1.tar.gz (3.4 MB view details)

Uploaded Source

Built Distribution

empathy_machines-0.5.1-py2.py3-none-any.whl (3.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file empathy-machines-0.5.1.tar.gz.

File metadata

File hashes

Hashes for empathy-machines-0.5.1.tar.gz
Algorithm Hash digest
SHA256 0533dd6faf43c1e4cc780e099f7f74cd76b61128e27889f8b0a52b0c0922a341
MD5 72ab5787f6cac9b9d35028a1f9038749
BLAKE2b-256 5aef561e2c746e4bf1979560e8031c571b92287fa5e73541b2d4632592f75134

See more details on using hashes here.

File details

Details for the file empathy_machines-0.5.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for empathy_machines-0.5.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 f426bae6401fa67386049ee46c569d1e5e860ddb72fb8c365a2aa91179ffde47
MD5 8823810c0f53d82881f971ce30027205
BLAKE2b-256 c1a9a8892e76b3ed49b1aba724ec7b34d8d81552060f97342ee20365e448978f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page