Skip to main content

Toolkit for decision making under uncertainty.

Project description

Emukit

Master Branch Build Status | Develop Branch Build Status | Tests Coverage | GitHub License

Emukit is a highly adaptable Python toolkit for enriching decision making under uncertainty. This is particularly pertinent to complex systems where data is scarce or difficult to acquire. In these scenarios, propagating well-calibrated uncertainty estimates within a design loop or computational pipeline ensures that constrained resources are used effectively.

The main features currently available in Emukit are:

  • Multi-fidelity emulation: build surrogate models when data is obtained from multiple information sources that have different fidelity and/or cost;
  • Bayesian optimisation: optimise physical experiments and tune parameters of machine learning algorithms;
  • Experimental design/Active learning: design the most informative experiments and perform active learning with machine learning models;
  • Sensitivity analysis: analyse the influence of inputs on the outputs of a given system;
  • Bayesian quadrature [coming soon]: efficiently compute the integrals of functions that are expensive to evaluate.

Emukit is agnostic to the underlying modelling framework, which means you can use any tool of your choice in the Python ecosystem to build the machine learning model, and still be able to use Emukit.

Installation

Currently only installation from sources is supported.

Dependencies / Prerequisites

Emukit's primary dependencies are Numpy, GPy and GPyOpt. See requirements.

Install from sources

To install Emukit from source, create a local folder where you would like to put Emukit source code, and run following commands:

git clone https://github.com/amzn/Emukit.git
cd Emukit
python setup.py install

Alternatively you can run

pip install git+https://github.com/amzn/Emukit.git

Getting started

For examples see our tutorial notebooks.

Documentation

To learn more about Emukit, refer to our documentation.

To learn about emulation as a concept, check out the Emukit playground project.

License

Emukit is licensed under Apache 2.0. Please refer to LICENSE and NOTICE for further license information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

emukit-0.4.post0.tar.gz (67.1 kB view details)

Uploaded Source

File details

Details for the file emukit-0.4.post0.tar.gz.

File metadata

  • Download URL: emukit-0.4.post0.tar.gz
  • Upload date:
  • Size: 67.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5

File hashes

Hashes for emukit-0.4.post0.tar.gz
Algorithm Hash digest
SHA256 84e91085e799cf97bd10e435e87e8113948cd03bfefff5a4c6089d2528072f5b
MD5 d08524c0d23bf84fd58151eb4f57c31e
BLAKE2b-256 b974720c4231eadbe09be36e437bf63715f91c546ba245e0f0169d1e71bfe6ff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page