Skip to main content

Spacy model uploaded to PyPi. All credits go to the original devs.

Project description

Spacy model uploaded to PyPi. All credits go to the original devs.

English pipeline optimized for CPU.

Components:

  • tok2vec
  • tagger
  • parser
  • senter
  • ner
  • attribute_ruler
  • lemmatizer.
Feature Description
Name en_core_web_sm_vbspacy
Version 3.8.0
spaCy >=3.7.5,<3.9.0
Default Pipeline tok2vec, tagger, parser, attribute_ruler, lemmatizer, ner
Components tok2vec, tagger, parser, senter, attribute_ruler, lemmatizer, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources OntoNotes 5 (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)
ClearNLP Constituent-to-Dependency Conversion (Emory University)
WordNet 3.0 (Princeton University)
License MIT
Author Explosion

Label Scheme

View label scheme (113 labels for 3 components)
Component Labels
tagger $, '', ,, -LRB-, -RRB-, ., :, ADD, AFX, CC, CD, DT, EX, FW, HYPH, IN, JJ, JJR, JJS, LS, MD, NFP, NN, NNP, NNPS, NNS, PDT, POS, PRP, PRP$, RB, RBR, RBS, RP, SYM, TO, UH, VB, VBD, VBG, VBN, VBP, VBZ, WDT, WP, WP$, WRB, XX, _SP, ````
parser ROOT, acl, acomp, advcl, advmod, agent, amod, appos, attr, aux, auxpass, case, cc, ccomp, compound, conj, csubj, csubjpass, dative, dep, det, dobj, expl, intj, mark, meta, neg, nmod, npadvmod, nsubj, nsubjpass, nummod, oprd, parataxis, pcomp, pobj, poss, preconj, predet, prep, prt, punct, quantmod, relcl, xcomp
ner CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART

Accuracy

Type Score
TOKEN_ACC 99.86
TOKEN_P 99.57
TOKEN_R 99.58
TOKEN_F 99.57
TAG_ACC 97.29
SENTS_P 92.01
SENTS_R 89.39
SENTS_F 90.68
DEP_UAS 91.77
DEP_LAS 89.92
ENTS_P 84.30
ENTS_R 84.36
ENTS_F 84.33

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

en_core_web_sm_vbspacy-3.8.0.tar.gz (12.8 MB view details)

Uploaded Source

Built Distribution

en_core_web_sm_vbspacy-3.8.0-py3-none-any.whl (12.8 MB view details)

Uploaded Python 3

File details

Details for the file en_core_web_sm_vbspacy-3.8.0.tar.gz.

File metadata

File hashes

Hashes for en_core_web_sm_vbspacy-3.8.0.tar.gz
Algorithm Hash digest
SHA256 f237882f9c6ff55334232036e0d07a9d995564dafbed53a7898b935297df7c2e
MD5 9887f55511509273c220624d00f9e137
BLAKE2b-256 19ab2038c11540779d506e7d995b1632a8442593cd7b5dd490dc44a443c7ef34

See more details on using hashes here.

File details

Details for the file en_core_web_sm_vbspacy-3.8.0-py3-none-any.whl.

File metadata

File hashes

Hashes for en_core_web_sm_vbspacy-3.8.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e94cbf6c242453a89af524aaea8e08917b420c11792d6ac662d166b591059779
MD5 44fb0fc3fd1b8e9ab3f6fb4373261a16
BLAKE2b-256 a0a2c41f6f586d9689ffcb522f574075c558d64972887f4aa343e411228e70a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page