Skip to main content

AutoDL framework for neural network compression & acceleration

Project description

Embedded Network Optimization Technology

ENOT, or Embedded Network Optimization Technology, is a flexible tool for Deep Learning developers which automates neural architecture optimization. It can be useful in the following scenarios:

  • Target metric maximization (e.g., classification accuracy or intersection over union);
  • Target metric maximization with constrained computational resources (e.g., RAM, latency);

Framework advantages:

  • Controlled ratio between latency and network performance;
  • Networks in the pre-trained search space can exceed their stand-alone variants (in some scenarios);
  • Compatibility with almost any DL task and simple integration with the existing training pipelines.
  • Joint neural architecture search, prunning and distillation procedure can be applied to found optimal neural network architecture.

To use this package please refer to our documentation page.

Visit our website for more information.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

enot_autodl-3.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

enot_autodl-3.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

enot_autodl-3.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file enot_autodl-3.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for enot_autodl-3.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9051f3132d71fbfd1c55eb104aaee622775f2aa76a72a38bf94002bf889aeb71
MD5 d3d28c996818f95c78665ec01a58c8f2
BLAKE2b-256 d90db56f3ecf2e702b715e960389308fca42a233c2bff13be39b15b69b9171ab

See more details on using hashes here.

File details

Details for the file enot_autodl-3.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for enot_autodl-3.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dfe03f791fb78d4e275d933f70aa599d0ee7a000df2973eecac66ec304daa722
MD5 24f79a60cd25348cc036dc54376c8e71
BLAKE2b-256 2047610f93889afa0fce7929bfe72f90fe0d032096f3ca62ebd068924f568bb9

See more details on using hashes here.

File details

Details for the file enot_autodl-3.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for enot_autodl-3.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b1ca2e57e141160c65f4201d8cf05512eb95b55f92e928fc77ebc828358b333e
MD5 8cac00bcb58c6a85d975aed2a014b364
BLAKE2b-256 e2196bab06eec043bdc97fea07420f207b5e73bb2406eaf30ba842a6d2c3e3c1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page