Skip to main content

Package used to analyze preprocess edf files for the ENSEMBLE2 study

Project description

PyPI version License: GPL v3

ENSEMBLE EEG

Ensemble EEG is a library of EEG analyis tools for the ENSEMBLE study. As of today it is focuses on 5 seperate things:

  • Anonymizing EDF files in accordance with the ENSEMBLE study and the requirements of EDF+
  • Fixing EDF headers to adhere to the EDF+ standard
  • Converting BRM to EDF+ files
  • Combining seperate aEEG channels into one EDF+ file
  • Renaming EEG files according to ENSEMBLE and BIDS standards

Getting started

Prerequisites

The following is required for the use of this software

  • Python 3.10 & pip
    • For instructions, please refer to the following link

Installation

python -m pip install ensemble_eeg

Usage

Start python

  1. From command line
    1. Open cmd / terminal / powershell or your preferred command line interpreter
    2. Type python or python3
  2. Using your preferred python interpreter
    1. Jupyter notebook
    2. PyCharm
    3. Spyder

Anonymizing EDF-files

from ensemble_eeg import ensemble_edf
ensemble_edf.anonymize_edf_header("path/2/your/edf/file") # for windows users, type an r before the " to ensure the use of raw strings (r"path/2/your/edf/file") 

Fixing EDF headers

from ensemble_eeg import ensemble_edf
ensemble_edf.fix_edf_header("path/2/your/edf/file") # for windows users, type an r before the " to ensure the use of raw strings (r"path/2/your/edf/file") 

Combine left and right aEEG channels into one single file

from ensemble_eeg import ensemble_edf
ensemble_edf.combine_aeeg_channels('path/2/your/left/channel', 'path/2/your/right/channel', 'new_filename') # for windows users, type an r before the " to ensure the use of raw strings (r"path/2/your/edf/file") 

Rename EDF-files according to BIDS and ENSEMBLE standards

from ensemble_eeg import ensemble_edf
ensemble_edf.rename_for_ensemble('path/2/your/edf/file') # for windows users, type an r before the " to ensure the use of raw strings (r"path/2/your/edf/file") 

Example scripts for specific situations

1) File is already .edf, but you do not know whether header is EDF+, the file is not anonymized, and not renamed
from ensemble_eeg import ensemble_edf
file = 'path/2/your/edf/file' # for windows users, type an r before the " to ensure the use of raw strings (r"path/2/your/edf/file") 
ensemble_edf.fix_edf_header(file)       # for header check
ensemble_edf.anonymize_edf_header(file) # for anonymization

anonymized_file = 'path/2/your/anonymized/edf/file' # for windows users, type an r before the " to ensure the use of raw strings (r"path/2/your/edf/file") 
ensemble_edf.rename_for_ensemble(file)  # for renaming
2) Your file is .brm and you want to convert it to .edf
from ensemble_eeg import brm_to_edf
from ensemble_eeg import ensemble_edf
brm_file = 'path/2/your/brm/file' # for windows users, type an r before the " to ensure the use of raw strings (r"path/2/your/brm/file") 
brm_to_edf.convert_brm_to_edf(brm_file)     # for conversion, output edf is already anonymized
edf_file = 'path/2/your/edf/file'           # check which file was made in previous step
ensemble_edf.rename_for_ensemble(edf_file)  # for renaming
3) Your files are .edf, but left and right channels are seperate
from ensemble_eeg import ensemble_edf
left_file = 'path/2/your/left/edf/file' # for windows users, type an r before the " to ensure the use of raw strings (r"path/2/your/edf/file") 
right_file = 'path/2/your/right/edf/file' # for windows, type an r before the " to ensure the use of raw strings (r"path/2/your/edf/file") 
ensemble_edf.combine_aeeg_channels(left_file, right_file) # output is automatically anonymized
ensemble_edf.rename_for_ensemble(file)                    # for renaming
4) You want to anonymize multiple .edf files in the same directory
from ensemble_eeg import ensemble_edf
import glob
import os
edf_directory = 'path/2/your/left/edf/directory' # for windows users, type an r before the " to ensure the use of raw strings (r"path/2/your/edf/file") 
edf_files = glob.glob(os.path.join(edf_directory, "*.edf"))
for file in edf_files:
      ensemble_edf.fix_edf_header(file) 
      ensemble_edf.anonymize_edf_header(file) 
      
      anonymized_filename = Path(file).stem + "_ANONYMIZED" + Path(file).suffix
      ensemble_edf.rename_for_ensemble(anonymized_filename)                    
5) You want to convert multiple .brm files in the same directory
from ensemble_eeg import brm_to_edf
import glob
import os
brm_directory = 'path/2/your/left/edf/directory' # for windows users, type an r before the " to ensure the use of raw strings (r"path/2/your/edf/file") 
brm_files = glob.glob(os.path.join(brm_directory, "*.brm"))
for file in brm_files:
      brm_to_edf.convert_brm_to_edf(file) 

For more scripts, please refer to the demos folder

Acknowledgements

Software development has been funded by La Fondation Paralysie Cérébrale under grant ENSEMBLE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ensemble_eeg-0.1.6.tar.gz (24.8 kB view details)

Uploaded Source

Built Distribution

ensemble_eeg-0.1.6-py3-none-any.whl (23.5 kB view details)

Uploaded Python 3

File details

Details for the file ensemble_eeg-0.1.6.tar.gz.

File metadata

  • Download URL: ensemble_eeg-0.1.6.tar.gz
  • Upload date:
  • Size: 24.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.2

File hashes

Hashes for ensemble_eeg-0.1.6.tar.gz
Algorithm Hash digest
SHA256 5290ba6e0cf04c4f09c2d1be2f7fde1d3b60fef86c779c4b8e22621c5c20eb03
MD5 721c3e0e4859a5f39ac0c5a7d2eca223
BLAKE2b-256 1910d79b09c62bae798804a3746bd26aa3afd81dcbef2cb1ad4687b2d3d45aea

See more details on using hashes here.

File details

Details for the file ensemble_eeg-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: ensemble_eeg-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 23.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.2

File hashes

Hashes for ensemble_eeg-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 d667249c698b621027989832a306931bc05d44f5df7eb03ad16a1fdc8ba4d156
MD5 2863fd3d6413511d56510e9879d215fd
BLAKE2b-256 66e379e77f2b19f3c4f10a6f3e394863d1682c30f403032aae025a502c10927c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page