Skip to main content

You can do outlier detection.

Project description

ensemble_outlier_sample_detection

A method for removing outlier samples.

How to use.

You can see more details in the example.

from ensemble_outlier_sample_detection import EnsembleOutlierSampleDetector

elo = EnsembleOutlierSampleDetector(random_state = 334, n_jobs = -1)
elo.fit(X, y)
elo.outlier_support_    # boolean(np.ndarray)

Reference

Paper

Sites

LICENSE

Copyright © 2021 yu9824

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ensemble_outlier_sample_detection-0.1.0.tar.gz (11.9 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file ensemble_outlier_sample_detection-0.1.0.tar.gz.

File metadata

  • Download URL: ensemble_outlier_sample_detection-0.1.0.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for ensemble_outlier_sample_detection-0.1.0.tar.gz
Algorithm Hash digest
SHA256 650800723db73ef58fa1b1c034853a6049d2949e4bf1f1f7d892a9f662675bc1
MD5 58da4944af9cb760c6b6a09657f476d0
BLAKE2b-256 bbc2634fcfb5ba1ad4563625a8a57232c0e779e418e64ec3ce828454db393116

See more details on using hashes here.

File details

Details for the file ensemble_outlier_sample_detection-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: ensemble_outlier_sample_detection-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 10.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.8.10

File hashes

Hashes for ensemble_outlier_sample_detection-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b93f86481d09c1c1df030a3af6de2e8d5b13189dbc8a8ba5f100420900af63b0
MD5 e8a257f3cc55897f2226a8dbf5774f59
BLAKE2b-256 c5063160b3588fee6840fd10ef2b72c8e326bfb65ea5b9bf75fa4db7874a720d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page