Transforms categorical features into embedded vectors
Project description
Package transforms your categorical variables into embedded vectors. You should have tensorflow, pandas, numpy, keras and sklearn installed.
Attributes: model = EntityEmbedding(dataframe, features from the copy of the df, target column, column you want a vector for)
Hyperparameters you can optimize: model.train_fit(activation1='relu', activation2='relu', activation3='relu', loss='mean_squared_error', metrics='mape', dense_size_num=128, dense_size_conc_1=300, dense_size_conc_2=300, alpha=1e-3, epochs=1000, batch_size=512, verbose=1, patience=5)
Inside model.transform(), always provide embedded vector you want to use: model.transform(model.ent_emb)
model.visualize() returns 2 d visualization of your column categories.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file ent_embedding-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: ent_embedding-0.0.1-py3-none-any.whl
- Upload date:
- Size: 2.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b6d2e40113bf1693f6a2239879b51b9ff1fa2b343f65678bb85abbef5105f9cf |
|
MD5 | 211c0acdf97b32f9d34671df087ac176 |
|
BLAKE2b-256 | c6421e23ee248235473ca8703588c5cb1a1d8d6d45bb13c9f060d9601273ec71 |