Sampling SVD singular vectors for Distributional Semantics Models
Project description
entropix
Generate count-based Distributional Semantic Models by sampling SVD singular vectors instead of using top components.
Install
pip install entropix
or, after a git clone:
python3 setup.py install
Use
Sequential mode
entropix sample \
--model /abs/path/to/dense/numpy/model.npy \
--vocab /abs/path/to/corresponding/model.vocab \
--dataset dataset_to_optimize_on \ # men, simlex or simverb
--shuffle \
--mode seq \
--kfold-size .2 \ # size of kfold, between 0 and .5
--metric pearson \ # spr(spearman), pearson, rmse or both (spr+rmse)
--num-threads 5
Limit mode
entropix sample \
--model /abs/path/to/dense/numpy/model.npy \
--vocab /abs/path/to/corresponding/model.vocab \
--dataset dataset_to_optimize_on \ # men, simlex or simverb
--mode limit \
--metric pearson \
--limit 10 # number of dimensions to sample
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
entropix-2.0.1.tar.gz
(7.9 kB
view details)
File details
Details for the file entropix-2.0.1.tar.gz
.
File metadata
- Download URL: entropix-2.0.1.tar.gz
- Upload date:
- Size: 7.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a9b8acbcb879464be6a7165d20757b8208e0fcafaeb4132a37096ce9e6cb9e38 |
|
MD5 | c8d2d4d1d8fceac02ccd3c1af7d3432b |
|
BLAKE2b-256 | c760318ca0cee5ef15aeabfebd98ef935585f8f24d6d29617fb7ed816c2fcc27 |