Skip to main content

Formulate human-readable queries and retrieve data from ENTSO-E into pandas.DataFrame format.

Project description

Formulate readable queries and handle data in Pandas, including an exhaustive set of pre-defined queries.

>>> import requests
>>> from lxml import objectify
>>> from lxml.etree import dump
>>> url = 'https://transparency.entsoe.eu/api?' \
...       'documentType=A81&businessType=A95&psrType=A04&type_MarketAgreement.Type=A01&controlArea_Domain=10YNL----------L' \
...       f'&periodStart=202101010000&periodEnd=202104010000&securityToken={api_key}'
>>> response = requests.Session().get(url=url)
>>> element = objectify.fromstring(response.content)
>>> dump(element)
<Balancing_MarketDocument xmlns="urn:iec62325.351:tc57wg16:451-6:balancingdocument:3:0">
  <mRID>051b91beed574b48b4548214e9001afc</mRID>
  <revisionNumber>1</revisionNumber>
  <type>A81</type>
  <process.processType>A34</process.processType>
  <sender_MarketParticipant.mRID codingScheme="A01">10X1001A1001A450</sender_MarketParticipant.mRID>
  <sender_MarketParticipant.marketRole.type>A32</sender_MarketParticipant.marketRole.type>
  <receiver_MarketParticipant.mRID codingScheme="A01">10X1001A1001A450</receiver_MarketParticipant.mRID>
  <receiver_MarketParticipant.marketRole.type>A33</receiver_MarketParticipant.marketRole.type>
  <createdDateTime>2021-10-04T18:12:43Z</createdDateTime>
  <controlArea_Domain.mRID codingScheme="A01">10YNL----------L</controlArea_Domain.mRID>
  <period.timeInterval>
    <start>2020-12-31T23:00Z</start>
    <end>2021-03-31T22:00Z</end>
  </period.timeInterval>
  <TimeSeries>
    <mRID>1</mRID>
    <businessType>A95</businessType>
    <type_MarketAgreement.type>A01</type_MarketAgreement.type>
    <mktPSRType.psrType>A04</mktPSRType.psrType>
    <flowDirection.direction>A03</flowDirection.direction>
    <quantity_Measure_Unit.name>MAW</quantity_Measure_Unit.name>
    <curveType>A01</curveType>
    <Period>
      <timeInterval>
        <start>2020-12-31T23:00Z</start>
        <end>2021-01-01T23:00Z</end>
      </timeInterval>
      <resolution>PT60M</resolution>
      <Point>
        <position>1</position>
        <quantity>44</quantity>
      </Point>
      <Point>
        <position>2</position>
        <quantity>44</quantity>
[...]

becomes

>>> import entsoe_client as ec
>>> from entsoe_client.ParameterTypes import *
>>> client = ec.Client(api_key)
>>> parser = ec.Parser
>>> query = ec.Query(
...     documentType=DocumentType("Contracted reserves"),
...     psrType=PsrType("Generation"),
...     businessType=BusinessType("Frequency containment reserve"),
...     controlArea_Domain=Area("NL"),
...     type_MarketAgreementType=MarketAgreementType("Daily"),
...     periodStart="2021-01-01T00:00",
...     periodEnd="2021-04-01T00:00"
... )
>>> response = client(query)
>>> df = parser.parse(response)
>>> df.iloc[:,:3].head()
                          position quantity Period.timeInterval.start...
2020-12-31 23:00:00+00:00        1       44         2020-12-31T23:00Z
2021-01-01 00:00:00+00:00        2       44         2020-12-31T23:00Z
2021-01-01 01:00:00+00:00        3       44         2020-12-31T23:00Z
2021-01-01 02:00:00+00:00        4       44         2020-12-31T23:00Z
2021-01-01 03:00:00+00:00        5       44         2020-12-31T23:00Z
...

predefined queries are subset of the generic Query class, covering all examples of the ENTSO-E API guide.

>>> predefined_query = ec.Queries.Balancing.AmountOfBalancingReservesUnderContract(
...     controlArea_Domain=Area("NL"),
...     type_MarketAgreementType=MarketAgreementType("Daily"),
...     psrType=PsrType("Generation"),
...     periodStart="2021-01-01T00:00",
...     periodEnd="2021-04-01T00:00"
... )
...
>>> predefined_query() == query()
True

ENTSO-E Client enables straight-forward access to all of the data at ENTSO-E Transparency Platform.
  • Query templates abstract the API specifics through Enumerated types.

  • Parse responses into Pandas DataFrames without loss of any information.

The separation of Queries, Client and Parser with their hierarchical abstractions keep the package extensible and maintainable. A pipeline from Query to DataFrame is trivial, preserving the ability to customize steps in between.
The implementation relies primarily on the Transparency Platform restful API - user guide. The Manual of Procedures (MoP) documents provide further insight on the business requirements specification. Further information can be found in the Electronic Data Interchange (EDI) Library.

Main contributions

  • Exhaustive List of ParameterTypes.

    These allow mapping between natural language and the codes required for GET requests, e.g. DocumentType.A85 == DocumentType("Imbalance price"). This feature allows keeping track of queries without jumping between documents or adding comments.

  • Exhaustive List of Pre-defined Queries from ENTSO-E API Guide.

    ENTSO-E API Guide is a minial set for any API connector to implement and reflects all dashboards on ENTSO-E Transparency Platform.

  • Parsers

    Response Documents come in XML schema which can be parsed into pandas DataFrames.

    Implemented: GL_MarketDocuments, TransmissionNetwork_MarketDocuments, Publication_MarketDocuments and Balancing_MarketDocuments.

    Missing: Outages, Congestion Management and System Operations.

Nevertheless, ENTSO-E Client seeks to be minimal to go from Query to DataFrame and requires domain- knowledge on how to formulate queries and interpret various columns of a parsed response.


ENTSO-E relies on many codes (Type) to map to desired queries. Types are encoded in Enum classes with a .help() function to list the all. They can be addressed through Type[code] or Type(string), making interaction easy. HTTP requests and responses usually require the code, whereas we want to formulate the query as a human-readable string.

from entsoe_client import Queries
from entsoe_client.ParameterTypes import *

Queries.Transmission.CapacityAllocatedOutsideEU(
        out_Domain=Area('SK'),
        in_Domain=Area('UA_BEI'),
        marketAgreementType=MarketAgreementType('Daily'), # Original code: A01
        auctionType=AuctionType('Explicit'), # Original code: A02
        auctionCategory=AuctionCategory('Hourly'), # Original code: A04
        classificationSequence_AttributeInstanceComponent_Position=1,
        periodStart=201601012300,
        periodEnd=201601022300)
>>> ParameterTypes.DocumentType['A25'] == ParameterTypes.DocumentType('Allocation result document')
True
>>> ec.ParameterTypes.DocumentType.help()
--- DocumentType ---
API_PARAMETER: DESCRIPTION
[...]
A25: Allocation result document
A71: Generation forecast
A72: Reservoir filling information
A73: Actual generation
A85: Imbalance prices
A86: Imbalance volume
[...]
API_PARAMETER: DESCRIPTION
--- DocumentType ---
>>> ec.ParameterTypes.BusinessType.help()
--- BusinessType ---
API_PARAMETER: DESCRIPTION
[...]
A25: General Capacity Information
A29: Already allocated capacity(AAC)
A97: Manual frequency restoration reserve
B08: Total nominated capacity
C22: Shared Balancing Reserve Capacity
C24: Actual reserve capacity
[...]
API_PARAMETER: DESCRIPTION
--- BusinessType ---
#shortened from sample_plot.py
import entsoe_client as ec
from settings import api_key

# Instantiate Client, Parser and Query.
client = ec.Client(api_key)
parser = ec.Parser()
query = ec.Queries.Generation.AggregatedGenerationPerType(
    in_Domain=ec.ParameterTypes.Area('DE_LU'),
    periodStart=202109050200,
    periodEnd=202109070200)

# Extract data.
response = client(query)
df = parser(response)
[...]

# Transform data.
production = df[~consumption_mask][['quantity', 'TimeSeries.MktPSRType.psrType']]
## PsrType, e.g. `B01` := `Biomass`.
production['GenerationType'] = production['TimeSeries.MktPSRType.psrType']. \
    apply(lambda x: ParameterTypes.PsrType[x].value) # Map ENTSO-E PsrTypes into human-readable string.
production_by_type = pd.pivot_table(production,
                                    index=production.index,
                                    columns='GenerationType',
                                    values='quantity')
[...]
# Plot.
production_by_type.plot.bar(title="Production by Generation Type in DE-LU",
                            xlabel="UTC",
                            ylabel='MWh',
                            ax=ax,
                            **plot_params)
[...]
./sample_plot.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

entsoe_client-0.2.2.tar.gz (26.6 kB view details)

Uploaded Source

Built Distribution

entsoe_client-0.2.2-py3-none-any.whl (36.7 kB view details)

Uploaded Python 3

File details

Details for the file entsoe_client-0.2.2.tar.gz.

File metadata

  • Download URL: entsoe_client-0.2.2.tar.gz
  • Upload date:
  • Size: 26.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.9.16 Linux/6.1.8-200.fc37.x86_64

File hashes

Hashes for entsoe_client-0.2.2.tar.gz
Algorithm Hash digest
SHA256 a89bedf71e76e58c208c1ecde16b9a578c7d0b4bb7407e9c5ad9501548676053
MD5 77063f9241ef695bc6bc4c1805268440
BLAKE2b-256 835db5cf770cb7a617f1e860b0c9de3b01948e6047d5191bdbb7c923fbe5d717

See more details on using hashes here.

File details

Details for the file entsoe_client-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: entsoe_client-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 36.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.2 CPython/3.9.16 Linux/6.1.8-200.fc37.x86_64

File hashes

Hashes for entsoe_client-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 852a5db7623aa4d2fe695a13cb59487f2c19cb392beeaa63246294ae921d6e43
MD5 acf2cd2bda2c6307256955ec4321e8c6
BLAKE2b-256 a2e3f3c25d5409cd207077803cdec5681b1108537f6719edbb1610db7fdc4df0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page