Skip to main content

A development environment management tool for data scientists.

Project description

envd cat wink envd cat wink

Development environment for AI/ML

discord invitation link trackgit-views Python Version all-contributors envd package donwloads continuous integration Coverage Status

explain

explain

What is envd?

envd (ɪnˈvdɪ) is a command-line tool that helps you create the container-based development environment for AI/ML.

Development environments are full of python and system dependencies, CUDA, BASH scripts, Dockerfiles, SSH configurations, Kubernetes YAMLs, and many other clunky things that are always breaking. envd is to solve the problem:

  1. Declare the list of dependencies (CUDA, python packages, your favorite IDE, and so on) in build.envd
  2. Simply run envd up.
  3. Develop in the isolated environment.

Why use envd?

Environments built with envd provide the following features out-of-the-box:

❤️ Knowledge reuse in your team

envd build functions can be reused. Use include function to import any git repositories. No more copy/paste Dockerfile instructions, let's reuse them.

envdlib = include("https://github.com/tensorchord/envdlib")

def build():
    base(os="ubuntu20.04", language="python")
    envdlib.tensorboard(host_port=8888)
envdlib.tensorboard is defined in github.com/tensorchord/envdlib
def tensorboard(
    envd_port=6006,
    envd_dir="/home/envd/logs",
    host_port=0,
    host_dir="/tmp",
):
    """Configure TensorBoard.

    Make sure you have permission for `host_dir`

    Args:
        envd_port (Optional[int]): port used by envd container
        envd_dir (Optional[str]): log storage mount path in the envd container
        host_port (Optional[int]): port used by the host, if not specified or equals to 0,
            envd will randomly choose a free port
        host_dir (Optional[str]): log storage mount path in the host
    """
    install.python_packages(["tensorboard"])
    runtime.mount(host_path=host_dir, envd_path=envd_dir)
    runtime.daemon(
        commands=[
            [
                "tensorboard",
                "--logdir",
                envd_dir,
                "--port",
                str(envd_port),
                "--host",
                "0.0.0.0",
            ],
        ]
    )
    runtime.expose(envd_port=envd_port, host_port=host_port, service="tensorboard")

⏱️ Builtkit native, build up to 6x faster

Buildkit supports parallel builds and software cache (e.g. pip index cache and apt cache). You can enjoy the benefits without knowledge of it.

For example, the PyPI cache is shared across builds and thus the package will be cached if it has been downloaded before.

🐍 One configuration to rule them all

Development environments are full of Dockerfiles, bash scripts, Kubernetes YAML manifests, and many other clunky files that are always breaking. You just need one configuration file build.envd[^1], it works both for local Docker and Kubernetes clusters in the cloud.

envd

[^1]: The build language is starlark, which is a dialect of Python.

✍️ Don't sacrifice your developer experience

SSH is configured for the created environment. You can use vscode-remote, jupyter, pycharm or other IDEs that you love. Besides this, declare the IDE extensions you want, let envd take care of them.

def build():
    install.vscode_extensions([
        "ms-python.python",
    ])

☁️ No polluted environment

Are you working on multiple projects, all of which need different versions of CUDA? envd helps you create isolated and clean environments.

Who should use envd?

We're focused on helping data scientists and teams that develop AI/ML models. And they may suffer from:

  • building the development environments with Python/R/Julia, CUDA, Docker, SSH, and so on. Do you have a complicated Dockerfile or build script that sets up all your dev environments, but is always breaking?
  • Updating the environment. Do you always need to ask infrastructure engineers how to add a new Python/R/Julia package in the Dockerfile?
  • Managing environments and machines. Do you always forget which machines are used for the specific project, because you handle multiple projects concurrently?

Talk with us

💬 Interested in talking with us about your experience building or managing AI/ML applications?

Set up a time to chat!

Getting Started 🚀

Requirements

  • Docker (20.10.0 or above)

Install and bootstrap envd

envd can be installed with pip (only support Python3). After the installation, please run envd bootstrap to bootstrap.

pip3 install --pre --upgrade envd
envd bootstrap

You can add --dockerhub-mirror or -m flag when running envd bootstrap, to configure the mirror for docker.io registry:

envd bootstrap --dockerhub-mirror https://docker.mirrors.sjtug.sjtu.edu.cn

Create an envd environment

Please clone the envd-quick-start:

git clone https://github.com/tensorchord/envd-quick-start.git

The build manifest build.envd looks like:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")

Note that we use Python here as an example but please check out examples for other languages such as R and Julia here.

Then please run the command below to set up a new environment:

cd envd-quick-start && envd up
$ cd envd-quick-start && envd up
[+]  parse build.envd and download/cache dependencies 2.8s  (finished)
 => download oh-my-zsh                                                    2.8s
[+] 🐋 build envd environment 18.3s (25/25)  (finished)
 => create apt source dir                                                 0.0s
 => local://cache-dir                                                     0.1s
 => => transferring cache-dir: 5.12MB                                     0.1s
...
 => pip install numpy                                                    13.0s
 => copy /oh-my-zsh /home/envd/.oh-my-zsh                                 0.1s
 => mkfile /home/envd/install.sh                                          0.0s
 => install oh-my-zsh                                                     0.1s
 => mkfile /home/envd/.zshrc                                              0.0s
 => install shell                                                         0.0s
 => install PyPI packages                                                 0.0s
 => merging all components into one                                       0.3s
 => => merging                                                            0.3s
 => mkfile /home/envd/.gitconfig                                          0.0s
 => exporting to oci image format                                         2.4s
 => => exporting layers                                                   2.0s
 => => exporting manifest sha256:7dbe9494d2a7a39af16d514b997a5a8f08b637f  0.0s
 => => exporting config sha256:1da06b907d53cf8a7312c138c3221e590dedc2717  0.0s
 => => sending tarball                                                    0.4s
envd-quick-start via Py v3.9.13 via 🅒 envd
⬢ [envd] # You are in the container-based environment!

Set up Jupyter notebook

Please edit the build.envd to enable jupyter notebook:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")
    config.jupyter()

You can get the endpoint of the running Jupyter notebook via envd envs ls.

$ envd up --detach
$ envd envs ls
NAME                    JUPYTER                 SSH TARGET              CONTEXT                                 IMAGE                   GPU     CUDA    CUDNN   STATUS          CONTAINER ID
envd-quick-start        http://localhost:42779   envd-quick-start.envd   /home/gaocegege/code/envd-quick-start   envd-quick-start:dev    false   <none>  <none>  Up 54 seconds   bd3f6a729e94

More on documentation 📝

See envd documentation.

Roadmap 🗂️

Please checkout ROADMAP.

Contribute 😊

We welcome all kinds of contributions from the open-source community, individuals, and partners.

Open in Gitpod

Contributors ✨

Thanks goes to these wonderful people (emoji key):

 Friends A.
Friends A.

📖 🎨
Aaron Sun
Aaron Sun

📓 💻
Aka.Fido
Aka.Fido

📦 📖 💻
Alex Xi
Alex Xi

💻
Bingyi Sun
Bingyi Sun

💻
Ce Gao
Ce Gao

💻 📖 🎨 📆
Guangyang Li
Guangyang Li

💻
Gui-Yue
Gui-Yue

💻
Haiker Sun
Haiker Sun

💻
Ikko Ashimine
Ikko Ashimine

💻
Isaac
Isaac

💻
JasonZhu
JasonZhu

💻
Jian Zeng
Jian Zeng

🎨 🤔 🔬
Jinjing Zhou
Jinjing Zhou

🐛 💻 🎨 📖
Jun
Jun

📦 💻
Keming
Keming

💻 📖 🤔 🚇
Kevin Su
Kevin Su

💻
Ling Jin
Ling Jin

🐛 🚇
Manjusaka
Manjusaka

💻
Nino
Nino

🎨 💻
Pengyu Wang
Pengyu Wang

📖
Sepush
Sepush

📖
Siyuan Wang
Siyuan Wang

💻 🚇 🚧
Suyan
Suyan

📖
To My
To My

📖
Tumushimire Yves
Tumushimire Yves

💻
Wei Zhang
Wei Zhang

💻
Weizhen Wang
Weizhen Wang

💻
XRW
XRW

💻
Xu Jin
Xu Jin

💻
Xuanwo
Xuanwo

💬 🎨 🤔 👀
Yijiang Liu
Yijiang Liu

💻
Yilong Li
Yilong Li

📖 🐛 💻
Yuan Tang
Yuan Tang

💻 🎨 📖 🤔
Yuchen Cheng
Yuchen Cheng

🐛 🚇 🚧 🔧
Yuedong Wu
Yuedong Wu

💻
Yunchuan Zheng
Yunchuan Zheng

💻
Zheming Li
Zheming Li

💻
Zhenguo.Li
Zhenguo.Li

💻 📖
Zhenzhen Zhao
Zhenzhen Zhao

🚇 📓 💻
Zhizhen He
Zhizhen He

💻 📖
cutecutecat
cutecutecat

💻
dqhl76
dqhl76

📖 💻
jimoosciuc
jimoosciuc

📓
kenwoodjw
kenwoodjw

💻
nullday
nullday

🤔 💻
wangxiaolei
wangxiaolei

💻
wyq
wyq

🐛 🎨 💻
xiangtianyu
xiangtianyu

📖
xieydd
xieydd

💻
xing0821
xing0821

🤔 📓 💻
zhyon404
zhyon404

💻
杨成锴
杨成锴

💻

This project follows the all-contributors specification. Contributions of any kind welcome!

Star History

Star History Chart

License 📋

Apache 2.0

trackgit-views

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

envd-0.2.5rc1.tar.gz (264.8 kB view details)

Uploaded Source

Built Distributions

envd-0.2.5rc1-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.5rc1-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.5rc1-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.5rc1-cp311-cp311-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

envd-0.2.5rc1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc1-cp311-cp311-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

envd-0.2.5rc1-cp311-cp311-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

envd-0.2.5rc1-cp310-cp310-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

envd-0.2.5rc1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc1-cp310-cp310-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

envd-0.2.5rc1-cp310-cp310-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

envd-0.2.5rc1-cp39-cp39-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

envd-0.2.5rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc1-cp39-cp39-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

envd-0.2.5rc1-cp39-cp39-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

envd-0.2.5rc1-cp38-cp38-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

envd-0.2.5rc1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc1-cp38-cp38-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

envd-0.2.5rc1-cp38-cp38-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

envd-0.2.5rc1-cp37-cp37m-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

envd-0.2.5rc1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc1-cp37-cp37m-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

envd-0.2.5rc1-cp36-cp36m-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

envd-0.2.5rc1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc1-cp36-cp36m-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file envd-0.2.5rc1.tar.gz.

File metadata

  • Download URL: envd-0.2.5rc1.tar.gz
  • Upload date:
  • Size: 264.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for envd-0.2.5rc1.tar.gz
Algorithm Hash digest
SHA256 efcbaf808b21700a1704d675dea28f6bc418a2b10f124c04d04ec12778ff5a08
MD5 ed955845927dc7a202faddde714a08f7
BLAKE2b-256 ab9ff4042eed5c520f9c095681e765fc8a089f1e688ea17fc7a8e7666ae67b86

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc1-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f0c9932fb817e002101ef5e41a21e52633a0f7e2dd712f0287fe6020c592816
MD5 f3d087bbb393fd47090bfbc80a435bf0
BLAKE2b-256 20ec473332f4b07c87c38796311c3436b3dc3401797238bac55a8c273ba1964a

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 613ca5fbd11baf17bab5ca07c6183e7ff73c4152f7f919fd9d1acad07f0d6bbb
MD5 a57e1354ab72f499f5a84dcc8ccb588a
BLAKE2b-256 38e17391898a2aea991b5fedda965287077fe0c3264a7f559d0e96f015b6bea1

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc1-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b96fa57304cb6e3ad0dc08a4533f68d199d8b682862c8f99fde1b2347ab6e778
MD5 8c181977221703bbf458af2f99725be0
BLAKE2b-256 4d9380e776f033a50e1b8ed9001533d82302eb6f732d6ed817609e0a54683289

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 df78dd66a6270dc532dfe207c3baa58c481347147bd0d300e6475e8195c86af4
MD5 8ffb45d731ad7275e90a25cc18424d20
BLAKE2b-256 23bdf2a34a6cfd35c7277429e31b321cb8f89c24cc7d2d69ba5ef59ce91f1d9e

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc1-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2b4f310791926e493d828554d2f5155ed00dcf79343ba9c2e4b171b802e73f4
MD5 36c38b75cb90ddd70f9ff96f43f1c2ba
BLAKE2b-256 061023000ada5e90fa34558812c43c41c60dda39845a0971e0f7ab0b4ddcd41e

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4f5b277b7e427101cedf35cfddd38c54c9a72276aa19268a32b53aaa61b44ce8
MD5 977984f901bdc68e408d8df4766ab5e5
BLAKE2b-256 08af9eeb141f2c73b71cf04d89c66f5c81084511dedbce9849f3c25bad10d560

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6dfb88bed4aec87b07a3223fdd4b3670a152656b9976379efa1d741798181ae7
MD5 e83b1ba855d16a6af5f54c027b0e4cf3
BLAKE2b-256 0046eeb06308ce70a894380ee47a63d96651485f99db6db4d9711640c5335070

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dbdc7e0b01c2070dd6b97c8838d3d277321a24d6e7ad15841517c5eae68394c1
MD5 34b058aeddb4984931300b36dc795ee1
BLAKE2b-256 59c7e633e7c2bd4139050d56299dc0372929a730a163830737bd6179aeb89665

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc1-cp311-cp311-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.11, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3ddd0327c2a9247f3b097e7d38698319a60df631605d9a4f60c3ee86fdabf39a
MD5 5f86ef0f6d12bed58049d7ee9318e4b6
BLAKE2b-256 ab2b4b072b83a0ccdddf1ba2bddb1d6b58a7d866319cc42f313104f0296c9fbe

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc1-cp311-cp311-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.11, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b370bc8131236230dab1beee2f82a69c015137b15d265d23d6febc399e049284
MD5 cbe2305a0b05855d1c03dd4169b91ad9
BLAKE2b-256 656ce01e625d79289cc2da1a3ca239c8b143b7eabe3a7513a9004772d554e1ba

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 546ebb9d09bf20f3e51a0836c76e2a0b8490fae0fbb12c3f5d04a1cee723173c
MD5 bfe11bd5e8b89204d08f4311c265f27f
BLAKE2b-256 b778e67fe0539b0629e9668bc21ea0804af5db1c8169facf53f75ec6d2e53c07

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bb1e81c93d7491c2a1cfcb0b38a21e832c38eeb79355e52cefaea4dc42dcea95
MD5 494177eef54be8c81ef4ea2ba1e048cc
BLAKE2b-256 6104fe9db8c3e73b21ca2f3a024645e44297ba4d1c2e33c434f399e5d235760b

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc1-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 023b3f27dbb87d5e4d6b09f1b7d53a3758ff0ea4b8399a3acce2352aa957ecb2
MD5 ce948219e5777f78c2df91c165bf41d5
BLAKE2b-256 10d262153867ebff18474212a95217e9af7c5b3c51de98a54f018a7b3421c711

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc1-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dd2a375a2152bd467df339b41392c9f95017fdd29cb14c4fb74c2eb8cf987570
MD5 ffdaf49eef1388ad7d2ac5657953b890
BLAKE2b-256 5d80e739d5a71d31793c9215b87945c77d36746b0e260c5b2fd9ea1c869031e2

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 04a5f1afa50df53022aa64dc1fe160dca04c03a9108712753a4ed7cbbce42c92
MD5 dc0190b4a921fac4150808c295ffabc1
BLAKE2b-256 ba8f1673752ac7c53b2f8012c5930df947e7e2a56c9e266b74f44e7b27a5d011

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96b3b543007204bc5658b3117a8b1886ea93171365879ce394980222213be53b
MD5 49b0d46bb27ca48ae21ff0f4ffb3e35c
BLAKE2b-256 6d53e203b748ece8f6c245255012e9e3f578c1bc67b87a73c011cd8f334c58f3

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 77bec52019fe58f68443e7cc6e30601256b9f270fcefd539b13a8e5bdb1cd551
MD5 ff66af362ad40eae41eaa01b27ad1636
BLAKE2b-256 53136a320d33c503ddca6f539c207124e3bd3ca3d65ebb69d476f1f12be18fe7

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8bfa561219001b9acea8e2d37886e028d190070247c0ef28e97ce1c6a34567b6
MD5 d212ea0992ee0ee4c400712a56584468
BLAKE2b-256 4a48bc7435a017856457f92ee34bab864da581b80bec38622fa787b8dea440f1

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5d436d72fa7c6179cb621d6f8d25ce0df64771c18c91e486466b70598ea57e12
MD5 f707afa0d3bdb7cff2bbeb12dd02b002
BLAKE2b-256 225f32302b12a10d2b498aae5599b5af90eceea34bd8fca9d0cf1760c37d18d6

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 811f7326df001bc567063be182bf794464c83d66cd34be0801783fc306b2f937
MD5 7c830665660523d10d8ceae6aa3307f8
BLAKE2b-256 e23a2fbda58ba4d616de03fed5d64c9524440d6d140cfb31417f6131b541f6c9

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc1-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fe72b1f8ddf0ac56fe251d92fd4badbe54587695460240ad4c40bd7c608aa45f
MD5 7a85cf6570ba7f5b18a07d3f891fa3ff
BLAKE2b-256 a8c3429cc9240c9d29620c479b5047a3d49bc0c0e797447499747fdd4309de33

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ea145cc90d1edbe42bd86692fc02d1a9568ac17aac9b91a4191ca17e20acce27
MD5 e8010f94bc2cf132d244b49d87879fb5
BLAKE2b-256 808598d0be419cad145093345691561a8abeaccf8cb248326ed69a80c75d35fc

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9e314eacd6a5a5db99552f23a984701b39ea4a64210095b8d99ba02112ab9b45
MD5 4abac402b0e1f7502115e5c10712f159
BLAKE2b-256 2b06701a8d76d4627ad19f233ba0ad6c7782015d6fc3920f7695aa7a5a1361bd

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd5776e5a611106e96848a2e257bc3c264ef3a0040c3bc6714c20c1d4ab1da96
MD5 a6b97d9c0262af8af99d6f2480939d4d
BLAKE2b-256 2bee9c8ab4c5a8944816f0f23aa7691e8332d651c19c4c56d784fadb90bfc6f0

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e779675901ef3d683931f15187b4e91852389cf1154fdfd02ff2d2940cfd2d8c
MD5 93924d806be2d87f896862a25c6f0f33
BLAKE2b-256 556c2d1a758de59fa38a79cc2b5dbd9c37d8b7a926fbf2368a9122fc6abb2a68

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc1-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 897480cea341737de9c35492591b2d0b42ab9524f4de21cf419ee69ea6ba5b7e
MD5 2830aa860c0a7de37f87919dc1199c44
BLAKE2b-256 92503dca9065ccbe955ccc4038f9e9bf0f2c05d1b1b234d74cb454e9fb421d22

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5af2b282927a0a89f9a0c9b80a72daa6540acf3b4d940837a5b56a1dc4a22ed9
MD5 b31dcfe1da4f830f95696e5d159b6ed3
BLAKE2b-256 54a9fd1d64a19ca3c66bf6726b69d319a14eb74433b7d77c34a219d976e701f0

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eacbe48173ac89b5d230ab200f2997ffec49d7d46af1e973456e8523bc74c390
MD5 31f72b03404a0aeac14dc6947934e545
BLAKE2b-256 7dfebb90d73e8385449e54f2a79de4cda4787acc319ee1fb0b128075d2bbe824

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page