Skip to main content

A development environment management tool for data scientists.

Project description

envd cat wink envd cat wink

Development environment for AI/ML

discord invitation link trackgit-views Python Version all-contributors envd package donwloads continuous integration Coverage Status

explain

explain

What is envd?

envd (ɪnˈvdɪ) is a command-line tool that helps you create the container-based development environment for AI/ML.

Development environments are full of python and system dependencies, CUDA, BASH scripts, Dockerfiles, SSH configurations, Kubernetes YAMLs, and many other clunky things that are always breaking. envd is to solve the problem:

  1. Declare the list of dependencies (CUDA, python packages, your favorite IDE, and so on) in build.envd
  2. Simply run envd up.
  3. Develop in the isolated environment.

Why use envd?

Environments built with envd provide the following features out-of-the-box:

❤️ Knowledge reuse in your team

envd build functions can be reused. Use include function to import any git repositories. No more copy/paste Dockerfile instructions, let's reuse them.

envdlib = include("https://github.com/tensorchord/envdlib")

def build():
    base(os="ubuntu20.04", language="python")
    envdlib.tensorboard(host_port=8888)
envdlib.tensorboard is defined in github.com/tensorchord/envdlib
def tensorboard(
    envd_port=6006,
    envd_dir="/home/envd/logs",
    host_port=0,
    host_dir="/tmp",
):
    """Configure TensorBoard.

    Make sure you have permission for `host_dir`

    Args:
        envd_port (Optional[int]): port used by envd container
        envd_dir (Optional[str]): log storage mount path in the envd container
        host_port (Optional[int]): port used by the host, if not specified or equals to 0,
            envd will randomly choose a free port
        host_dir (Optional[str]): log storage mount path in the host
    """
    install.python_packages(["tensorboard"])
    runtime.mount(host_path=host_dir, envd_path=envd_dir)
    runtime.daemon(
        commands=[
            [
                "tensorboard",
                "--logdir",
                envd_dir,
                "--port",
                str(envd_port),
                "--host",
                "0.0.0.0",
            ],
        ]
    )
    runtime.expose(envd_port=envd_port, host_port=host_port, service="tensorboard")

⏱️ Builtkit native, build up to 6x faster

Buildkit supports parallel builds and software cache (e.g. pip index cache and apt cache). You can enjoy the benefits without knowledge of it.

For example, the PyPI cache is shared across builds and thus the package will be cached if it has been downloaded before.

🐍 One configuration to rule them all

Development environments are full of Dockerfiles, bash scripts, Kubernetes YAML manifests, and many other clunky files that are always breaking. You just need one configuration file build.envd[^1], it works both for local Docker and Kubernetes clusters in the cloud.

envd

[^1]: The build language is starlark, which is a dialect of Python.

✍️ Don't sacrifice your developer experience

SSH is configured for the created environment. You can use vscode-remote, jupyter, pycharm or other IDEs that you love. Besides this, declare the IDE extensions you want, let envd take care of them.

def build():
    install.vscode_extensions([
        "ms-python.python",
    ])

☁️ No polluted environment

Are you working on multiple projects, all of which need different versions of CUDA? envd helps you create isolated and clean environments.

Who should use envd?

We're focused on helping data scientists and teams that develop AI/ML models. And they may suffer from:

  • building the development environments with Python/R/Julia, CUDA, Docker, SSH, and so on. Do you have a complicated Dockerfile or build script that sets up all your dev environments, but is always breaking?
  • Updating the environment. Do you always need to ask infrastructure engineers how to add a new Python/R/Julia package in the Dockerfile?
  • Managing environments and machines. Do you always forget which machines are used for the specific project, because you handle multiple projects concurrently?

Talk with us

💬 Interested in talking with us about your experience building or managing AI/ML applications?

Set up a time to chat!

Getting Started 🚀

Requirements

  • Docker (20.10.0 or above)

Install and bootstrap envd

envd can be installed with pip (only support Python3). After the installation, please run envd bootstrap to bootstrap.

pip3 install --pre --upgrade envd
envd bootstrap

You can add --dockerhub-mirror or -m flag when running envd bootstrap, to configure the mirror for docker.io registry:

envd bootstrap --dockerhub-mirror https://docker.mirrors.sjtug.sjtu.edu.cn

Create an envd environment

Please clone the envd-quick-start:

git clone https://github.com/tensorchord/envd-quick-start.git

The build manifest build.envd looks like:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")

Note that we use Python here as an example but please check out examples for other languages such as R and Julia here.

Then please run the command below to set up a new environment:

cd envd-quick-start && envd up
$ cd envd-quick-start && envd up
[+]  parse build.envd and download/cache dependencies 2.8s  (finished)
 => download oh-my-zsh                                                    2.8s
[+] 🐋 build envd environment 18.3s (25/25)  (finished)
 => create apt source dir                                                 0.0s
 => local://cache-dir                                                     0.1s
 => => transferring cache-dir: 5.12MB                                     0.1s
...
 => pip install numpy                                                    13.0s
 => copy /oh-my-zsh /home/envd/.oh-my-zsh                                 0.1s
 => mkfile /home/envd/install.sh                                          0.0s
 => install oh-my-zsh                                                     0.1s
 => mkfile /home/envd/.zshrc                                              0.0s
 => install shell                                                         0.0s
 => install PyPI packages                                                 0.0s
 => merging all components into one                                       0.3s
 => => merging                                                            0.3s
 => mkfile /home/envd/.gitconfig                                          0.0s
 => exporting to oci image format                                         2.4s
 => => exporting layers                                                   2.0s
 => => exporting manifest sha256:7dbe9494d2a7a39af16d514b997a5a8f08b637f  0.0s
 => => exporting config sha256:1da06b907d53cf8a7312c138c3221e590dedc2717  0.0s
 => => sending tarball                                                    0.4s
envd-quick-start via Py v3.9.13 via 🅒 envd
⬢ [envd] # You are in the container-based environment!

Set up Jupyter notebook

Please edit the build.envd to enable jupyter notebook:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")
    config.jupyter()

You can get the endpoint of the running Jupyter notebook via envd envs ls.

$ envd up --detach
$ envd envs ls
NAME                    JUPYTER                 SSH TARGET              CONTEXT                                 IMAGE                   GPU     CUDA    CUDNN   STATUS          CONTAINER ID
envd-quick-start        http://localhost:42779   envd-quick-start.envd   /home/gaocegege/code/envd-quick-start   envd-quick-start:dev    false   <none>  <none>  Up 54 seconds   bd3f6a729e94

More on documentation 📝

See envd documentation.

Roadmap 🗂️

Please checkout ROADMAP.

Contribute 😊

We welcome all kinds of contributions from the open-source community, individuals, and partners.

Open in Gitpod

Contributors ✨

Thanks goes to these wonderful people (emoji key):

 Friends A.
Friends A.

📖 🎨
Aaron Sun
Aaron Sun

📓 💻
Aka.Fido
Aka.Fido

📦 📖 💻
Alex Xi
Alex Xi

💻
Bingyi Sun
Bingyi Sun

💻
Ce Gao
Ce Gao

💻 📖 🎨 📆
Frost Ming
Frost Ming

💻
Guangyang Li
Guangyang Li

💻
Gui-Yue
Gui-Yue

💻
Haiker Sun
Haiker Sun

💻
Ikko Ashimine
Ikko Ashimine

💻
Isaac
Isaac

💻
JasonZhu
JasonZhu

💻
Jian Zeng
Jian Zeng

🎨 🤔 🔬
Jinjing Zhou
Jinjing Zhou

🐛 💻 🎨 📖
Jun
Jun

📦 💻
Keming
Keming

💻 📖 🤔 🚇
Kevin Su
Kevin Su

💻
Ling Jin
Ling Jin

🐛 🚇
Manjusaka
Manjusaka

💻
Nino
Nino

🎨 💻
Pengyu Wang
Pengyu Wang

📖
Sepush
Sepush

📖
Siyuan Wang
Siyuan Wang

💻 🚇 🚧
Suyan
Suyan

📖
To My
To My

📖
Tumushimire Yves
Tumushimire Yves

💻
Wei Zhang
Wei Zhang

💻
Weizhen Wang
Weizhen Wang

💻
XRW
XRW

💻
Xu Jin
Xu Jin

💻
Xuanwo
Xuanwo

💬 🎨 🤔 👀
Yijiang Liu
Yijiang Liu

💻
Yilong Li
Yilong Li

📖 🐛 💻
Yuan Tang
Yuan Tang

💻 🎨 📖 🤔
Yuchen Cheng
Yuchen Cheng

🐛 🚇 🚧 🔧
Yuedong Wu
Yuedong Wu

💻
Yunchuan Zheng
Yunchuan Zheng

💻
Zheming Li
Zheming Li

💻
Zhenguo.Li
Zhenguo.Li

💻 📖
Zhenzhen Zhao
Zhenzhen Zhao

🚇 📓 💻
Zhizhen He
Zhizhen He

💻 📖
cutecutecat
cutecutecat

💻
dqhl76
dqhl76

📖 💻
jimoosciuc
jimoosciuc

📓
kenwoodjw
kenwoodjw

💻
nullday
nullday

🤔 💻
wangxiaolei
wangxiaolei

💻
wyq
wyq

🐛 🎨 💻
xiangtianyu
xiangtianyu

📖
xieydd
xieydd

💻
xing0821
xing0821

🤔 📓 💻
zhyon404
zhyon404

💻
杨成锴
杨成锴

💻

This project follows the all-contributors specification. Contributions of any kind welcome!

Star History

Star History Chart

License 📋

Apache 2.0

trackgit-views

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

envd-0.2.5rc5.tar.gz (9.1 MB view details)

Uploaded Source

Built Distributions

envd-0.2.5rc5-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc5-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.5rc5-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.5rc5-cp311-cp311-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

envd-0.2.5rc5-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc5-cp311-cp311-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

envd-0.2.5rc5-cp311-cp311-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

envd-0.2.5rc5-cp310-cp310-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

envd-0.2.5rc5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc5-cp310-cp310-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

envd-0.2.5rc5-cp310-cp310-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

envd-0.2.5rc5-cp39-cp39-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

envd-0.2.5rc5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc5-cp39-cp39-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

envd-0.2.5rc5-cp39-cp39-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

envd-0.2.5rc5-cp38-cp38-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

envd-0.2.5rc5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc5-cp38-cp38-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

envd-0.2.5rc5-cp38-cp38-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

envd-0.2.5rc5-cp37-cp37m-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

envd-0.2.5rc5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc5-cp37-cp37m-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

envd-0.2.5rc5-cp36-cp36m-musllinux_1_1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

envd-0.2.5rc5-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.5rc5-cp36-cp36m-macosx_10_9_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file envd-0.2.5rc5.tar.gz.

File metadata

  • Download URL: envd-0.2.5rc5.tar.gz
  • Upload date:
  • Size: 9.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for envd-0.2.5rc5.tar.gz
Algorithm Hash digest
SHA256 dcb734e00f61c7d7bb5966f82f98923aa6c6edbf6f406e88c5910de53579b377
MD5 77593c0713d2b9ed15d234428ea7b81e
BLAKE2b-256 0411a97a0a6cf8bad192fd6428d965c7d3be2c56f7b977e7dfacb7015a207ad2

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc5-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 42920daa417622dc1d05018a8d2bc3e6b2f2a81da31854065c7e5e4377b77f93
MD5 683347c648bfd2d936be924d9ef8a6be
BLAKE2b-256 04df8596d441cbf055b21ec035a061026fc338c647d07a7fb64191fd1cfb7ab9

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc5-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36f4e1fae7e9fba5e9b983b7d028255666d31898bb1a12f7f732a935c50d3258
MD5 eace812d93c76f5582f010c8ba9be116
BLAKE2b-256 0e58e228354a02a2f12b5cee1376cc173d3cd3c15d93e9b45fc8691ee9064ee0

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 78cf01b97f03a75fbb09b0e9347b2702cf5eebb310e518fa7d17b4e7740a158f
MD5 af3e65e25e99384980d06fd293d6c2ea
BLAKE2b-256 3ab2f9859a1e503962f394fe076e227a1ba0c9ff57c337ea40b725b9fb7c8605

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc5-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b985e7c60fb296f1fdb9eaeddf7c8bd5cdcc2f864e578475811e8a2d7836cdea
MD5 39b2aef3330affbb6c58728f28ff7927
BLAKE2b-256 c27adc24268c7cfb61e77fe1ed165cd2186a369aff8af700d805f08d2b3f64a3

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a4fea810769483d838333cfb3d3e8341f82adfb2f95e0876e92a7be6cee04e18
MD5 8f0bc04987ed1fb83624b2c1c706b050
BLAKE2b-256 3cbce885f8081c6877940a3cbc92f739db0beee01868d773fe8d7a9807a9aa54

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc5-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c5ba38c46e69e443c7150094c52fe7f0f3c1a49397661f1718f53b9bea01b71a
MD5 3cad27cf9b1a3e36ac499928fdaf8b00
BLAKE2b-256 260200005f9e85213e46323baa66ddbe9b6d1b9228cc888634aa090809cda733

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc5-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de5f7120e0c921a848433fa560dbbf70df4648ff9becc08a1e999a033847c19c
MD5 c9e8bff319615fca98da0c51abe964ae
BLAKE2b-256 dbf16ad8a0073f6c1e1a42bc936bc7ba523bb1e7be213a9039559dc1f797a877

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc5-cp311-cp311-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.11, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a886127eacd297e8de3f2286505fdb4252435fee0e87c4730c2572833e1252a4
MD5 05ee463032211b10c5035cf256d86301
BLAKE2b-256 fe3e1edf5aeba77d241127bd4c54d3d370b144eed358957953ac8be57e034fd9

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc5-cp311-cp311-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.11, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c3d4fe194030014e46acd47de9216a4df665acaf1eb5d8e10286904c41c63154
MD5 455108ec46669112b246124caef83944
BLAKE2b-256 0d80841815aaf77afe73ceba7ff5c5a93b4e35dea2ea866d9c0777b557b31cb8

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc5-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c23f3970717cc0183ce5bccf594d1f23674d96f7283cd7af5232ac76935b0d57
MD5 a3c43ee0de3f78216ea7ecc8a29885bd
BLAKE2b-256 b7485fb9acf5f199b8d79525984692138656f5b2cec2c38883f4ad767ad9bfd1

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc5-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 af5463f705dd87fc828cd3c577082da9c556b32e290faf63806eee77c67f5bb8
MD5 9332518acb901415fa7b76ee9701470a
BLAKE2b-256 d27e3e40fce87e3b779fe64624580bffaa3b1696e050dc4d60fa73fb3ece7a5c

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc5-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4b9c42e455eb4067c501c481f48af91943cf9a62b895c52c809093f6a43805c5
MD5 ba00a0bc37577185ace2db2d2f436261
BLAKE2b-256 ad6517f1a32c03737aacdbb661870436b1e69a355684c7790272ecdcff6ca013

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc5-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cda1a92a5e9b7f39b5ba3646e9f40d950aeb438422140eaa83467688405c64bb
MD5 cc10e663492932eec5f61d572362356c
BLAKE2b-256 67e25a0ff6a473ce5031c45e842475a7b131072030f412e44f3eb3054af1081a

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc5-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 113a8a5d9bc3136faf15056e312a1ba88ce55d876ae6111e710373609459a51b
MD5 f49635233c3ed93879e83594dd99dcb3
BLAKE2b-256 e8e7f798e6e8cc3801ad8a63f13dc1f592664dd753412014ca98f33d3e4395eb

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc5-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02a47be077e0a2f319452604ead89cbbb9a3d4fee1cace7afa0e048792085770
MD5 dc4752d12f8837cb3c6fd756e45595c3
BLAKE2b-256 16019bffba6837abdf91e72707f5138e1a02877466db081def60b86102facb81

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc5-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b651736c38e188326e614e55f7af65d2522114fae09ae247efc875e9fea5b83b
MD5 9f414a2eda2aef3cf5fd63e951c1fa20
BLAKE2b-256 c4f77d55d13e873414d51609ea841e1ce6cfb3c5c154e3673218655c084a341b

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc5-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b0fd734c2da73cd569b39d2d4e79ebd5d993fe84818d5bf31f6a8029382c2da5
MD5 51618c5beb999bec3b48d032faf7413e
BLAKE2b-256 b04b39cc7b567b5ad9513cf2fd1e18f71d35d915b0c6b2d36d02bc206e72249e

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc5-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 80c51540173f13497ac4f6d2b9f5da085e17973a7688a7dd902007b61582882c
MD5 534eb0908eea5e6bd6af1b358ec25b65
BLAKE2b-256 86c5bb46ae614c891edc6c3f1f9a43deb5ad7e7a1bbef86bc9b0e8391a823f33

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e2e78bec0d16ae82d800e7d1a626031fe6fdf3066c432d03d892daff2be2bc1f
MD5 ad165b99b142d7b68800efd1b48489e9
BLAKE2b-256 e11c2e3e704510418440efe952ff8c1bbf932dd7f5a278de07b7cd9928cea5a1

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.5rc5-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2dcf33f0f85283f9b01863bef8eb6c700be0e9786bd4bf5ed88ef5c15ad9230b
MD5 9cd7d6f9b31e583574f0cff16dcf0778
BLAKE2b-256 2f940ab63f861f1707d833dab04550212a4ef2bfe0e98646565126cae0d571ba

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc5-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 53b3e08a4e67d785fca1e2ded5c05ebc7c096e7d189a9d065ef67bd4240664cd
MD5 6e88361c02b7a29e8604333dc7f4e002
BLAKE2b-256 c9df6728f63e8d06d37f4db303ba0d92100abd3132cf9a95b6ff5dbbbdb2e8b6

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc5-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 41d120d13de5d41d13dd29290cf352dddc464ce5f7f9846151465bd714e6d73f
MD5 a5f367fa0ad99fce76d30e0456bb3b94
BLAKE2b-256 efdee81798c92055e727aec58816ddac7b93d0f50aba26ad4e964ae2648556bd

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7a29626f2caa0e6ffbaa7015876fe6f25e9a60c2b02fb45ab0d23cbc58d701f
MD5 689f77f428228ffaef094ebd97d83fb1
BLAKE2b-256 5c3908f3ebfb162d8ee45e3c5343b7b04cbf854294b02022085b069a3ebb3799

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc5-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 44bd310e9747795c406d393c700468848b34880e8ceddcf829047c809813087d
MD5 b7d359b263260525dd6d1abca65b1a6a
BLAKE2b-256 81f365e355aa4452962548e2dd7cbb29c7f58d3d08b7fa3daef370247c614e5f

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc5-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6c6fd539466a441b7ec6fdb256174034a8cf8d8571766b71e7c793d9e8d26be4
MD5 f7e32faa19d4bdd0405759bd15ca251a
BLAKE2b-256 96f195e85bf8402ba0ec5d2cc82b8d36e68b36aa6ecb406132a4ecb625c80b3f

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.5rc5-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be7c698ddf214a50755aae3e560f780d5eae381824c9b9498e5a9b7831b6a152
MD5 6ac47785fb167903fa7e4b91b2978c64
BLAKE2b-256 c727fd460f79238163818ecdb520e60c9da908f267b7a182c8248bbc49a472c8

See more details on using hashes here.

File details

Details for the file envd-0.2.5rc5-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.5rc5-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.4 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.5rc5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3cbabf277ca5cf918de3b44b02ca9d108aa3a7b74825a60eeab030a3a880594f
MD5 04786baf4f78da27852b4c0a13b47763
BLAKE2b-256 6ac3e4d68b51497e307ff5ac9e75ce559b5adcfae83548d2abf8f249d0e06bca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page