Skip to main content

A development environment management tool for data scientists.

Project description

envd cat wink envd cat wink

Development environment for AI/ML

discord invitation link trackgit-views Python Version all-contributors envd package donwloads continuous integration Coverage Status

explain

explain

What is envd?

envd (ɪnˈvdɪ) is a command-line tool that helps you create the container-based development environment for AI/ML.

Development environments are full of python and system dependencies, CUDA, BASH scripts, Dockerfiles, SSH configurations, Kubernetes YAMLs, and many other clunky things that are always breaking. envd is to solve the problem:

  1. Declare the list of dependencies (CUDA, python packages, your favorite IDE, and so on) in build.envd
  2. Simply run envd up.
  3. Develop in the isolated environment.

Why use envd?

Environments built with envd provide the following features out-of-the-box:

❤️ Knowledge reuse in your team

envd build functions can be reused. Use include function to import any git repositories. No more copy/paste Dockerfile instructions, let's reuse them.

envdlib = include("https://github.com/tensorchord/envdlib")

def build():
    base(os="ubuntu20.04", language="python")
    envdlib.tensorboard(host_port=8888)
envdlib.tensorboard is defined in github.com/tensorchord/envdlib
def tensorboard(
    envd_port=6006,
    envd_dir="/home/envd/logs",
    host_port=0,
    host_dir="/tmp",
):
    """Configure TensorBoard.

    Make sure you have permission for `host_dir`

    Args:
        envd_port (Optional[int]): port used by envd container
        envd_dir (Optional[str]): log storage mount path in the envd container
        host_port (Optional[int]): port used by the host, if not specified or equals to 0,
            envd will randomly choose a free port
        host_dir (Optional[str]): log storage mount path in the host
    """
    install.python_packages(["tensorboard"])
    runtime.mount(host_path=host_dir, envd_path=envd_dir)
    runtime.daemon(
        commands=[
            [
                "tensorboard",
                "--logdir",
                envd_dir,
                "--port",
                str(envd_port),
                "--host",
                "0.0.0.0",
            ],
        ]
    )
    runtime.expose(envd_port=envd_port, host_port=host_port, service="tensorboard")

⏱️ Builtkit native, build up to 6x faster

Buildkit supports parallel builds and software cache (e.g. pip index cache and apt cache). You can enjoy the benefits without knowledge of it.

For example, the PyPI cache is shared across builds and thus the package will be cached if it has been downloaded before.

Getting Started 🚀

Requirements

  • Docker (20.10.0 or above)

Install and bootstrap envd

envd can be installed with pip, or you can download the binary release directly. After the installation, please run envd bootstrap to bootstrap.

# install with local pip
pip install --pre --upgrade envd
# or install with pipx
pipx install envd --pip-args="--pre"
# or download the latest release artifact with GitHub CLI
bash -c "gh release download -R tensorchord/envd -p $(echo envd_\*_$(uname)_$(uname -p))"

# bootstrap
envd bootstrap

You can add --dockerhub-mirror or -m flag when running envd bootstrap, to configure the mirror for docker.io registry:

envd bootstrap --dockerhub-mirror https://docker.mirrors.sjtug.sjtu.edu.cn

Create an envd environment

Please clone the envd-quick-start:

git clone https://github.com/tensorchord/envd-quick-start.git

The build manifest build.envd looks like:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")

Note that we use Python here as an example but please check out examples for other languages such as R and Julia here.

Then please run the command below to set up a new environment:

cd envd-quick-start && envd up
$ cd envd-quick-start && envd up
[+]  parse build.envd and download/cache dependencies 2.8s  (finished)
 => download oh-my-zsh                                                    2.8s
[+] 🐋 build envd environment 18.3s (25/25)  (finished)
 => create apt source dir                                                 0.0s
 => local://cache-dir                                                     0.1s
 => => transferring cache-dir: 5.12MB                                     0.1s
...
 => pip install numpy                                                    13.0s
 => copy /oh-my-zsh /home/envd/.oh-my-zsh                                 0.1s
 => mkfile /home/envd/install.sh                                          0.0s
 => install oh-my-zsh                                                     0.1s
 => mkfile /home/envd/.zshrc                                              0.0s
 => install shell                                                         0.0s
 => install PyPI packages                                                 0.0s
 => merging all components into one                                       0.3s
 => => merging                                                            0.3s
 => mkfile /home/envd/.gitconfig                                          0.0s
 => exporting to oci image format                                         2.4s
 => => exporting layers                                                   2.0s
 => => exporting manifest sha256:7dbe9494d2a7a39af16d514b997a5a8f08b637f  0.0s
 => => exporting config sha256:1da06b907d53cf8a7312c138c3221e590dedc2717  0.0s
 => => sending tarball                                                    0.4s
envd-quick-start via Py v3.9.13 via 🅒 envd
⬢ [envd] # You are in the container-based environment!

Set up Jupyter notebook

Please edit the build.envd to enable jupyter notebook:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")
    config.jupyter()

You can get the endpoint of the running Jupyter notebook via envd envs ls.

$ envd up --detach
$ envd envs ls
NAME                    JUPYTER                 SSH TARGET              CONTEXT                                 IMAGE                   GPU     CUDA    CUDNN   STATUS          CONTAINER ID
envd-quick-start        http://localhost:42779   envd-quick-start.envd   /home/gaocegege/code/envd-quick-start   envd-quick-start:dev    false   <none>  <none>  Up 54 seconds   bd3f6a729e94

More on documentation 📝

See envd documentation.

Roadmap 🗂️

Please checkout ROADMAP.

Contribute 😊

We welcome all kinds of contributions from the open-source community, individuals, and partners.

Open in Gitpod

Contributors ✨

Thanks goes to these wonderful people (emoji key):

 Friends A.
Friends A.

📖 🎨
Aaron Sun
Aaron Sun

📓 💻
Aka.Fido
Aka.Fido

📦 📖 💻
Alex Xi
Alex Xi

💻
Bingyi Sun
Bingyi Sun

💻
Ce Gao
Ce Gao

💻 📖 🎨 📆
Frost Ming
Frost Ming

💻
Guangyang Li
Guangyang Li

💻
Gui-Yue
Gui-Yue

💻
Haiker Sun
Haiker Sun

💻
Ikko Ashimine
Ikko Ashimine

💻
Isaac
Isaac

💻
JasonZhu
JasonZhu

💻
Jian Zeng
Jian Zeng

🎨 🤔 🔬
Jinjing Zhou
Jinjing Zhou

🐛 💻 🎨 📖
Jun
Jun

📦 💻
Keming
Keming

💻 📖 🤔 🚇
Kevin Su
Kevin Su

💻
Ling Jin
Ling Jin

🐛 🚇
Manjusaka
Manjusaka

💻
Nino
Nino

🎨 💻
Pengyu Wang
Pengyu Wang

📖
Sepush
Sepush

📖
Siyuan Wang
Siyuan Wang

💻 🚇 🚧
Suyan
Suyan

📖
To My
To My

📖
Tumushimire Yves
Tumushimire Yves

💻
Wei Zhang
Wei Zhang

💻
Weizhen Wang
Weizhen Wang

💻
XRW
XRW

💻
Xu Jin
Xu Jin

💻
Xuanwo
Xuanwo

💬 🎨 🤔 👀
Yijiang Liu
Yijiang Liu

💻
Yilong Li
Yilong Li

📖 🐛 💻
Yuan Tang
Yuan Tang

💻 🎨 📖 🤔
Yuchen Cheng
Yuchen Cheng

🐛 🚇 🚧 🔧
Yuedong Wu
Yuedong Wu

💻
Yunchuan Zheng
Yunchuan Zheng

💻
Zheming Li
Zheming Li

💻
Zhenguo.Li
Zhenguo.Li

💻 📖
Zhenzhen Zhao
Zhenzhen Zhao

🚇 📓 💻
Zhizhen He
Zhizhen He

💻 📖
cutecutecat
cutecutecat

💻
dqhl76
dqhl76

📖 💻
jimoosciuc
jimoosciuc

📓
kenwoodjw
kenwoodjw

💻
nullday
nullday

🤔 💻
tison
tison

💻
wangxiaolei
wangxiaolei

💻
wyq
wyq

🐛 🎨 💻
x0oo0x
x0oo0x

💻
xiangtianyu
xiangtianyu

📖
xieydd
xieydd

💻
xing0821
xing0821

🤔 📓 💻
zhyon404
zhyon404

💻
杨成锴
杨成锴

💻

This project follows the all-contributors specification. Contributions of any kind welcome!

Star History

Star History Chart

License 📋

Apache 2.0

trackgit-views

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

envd-0.2.6.tar.gz (9.4 MB view details)

Uploaded Source

Built Distributions

envd-0.2.6-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.6-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.6-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.6-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.6-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.6-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

envd-0.2.6-cp311-cp311-musllinux_1_1_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

envd-0.2.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.6-cp311-cp311-macosx_11_0_arm64.whl (18.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

envd-0.2.6-cp311-cp311-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

envd-0.2.6-cp310-cp310-musllinux_1_1_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

envd-0.2.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.6-cp310-cp310-macosx_11_0_arm64.whl (18.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

envd-0.2.6-cp310-cp310-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

envd-0.2.6-cp39-cp39-musllinux_1_1_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

envd-0.2.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.6-cp39-cp39-macosx_11_0_arm64.whl (18.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

envd-0.2.6-cp39-cp39-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

envd-0.2.6-cp38-cp38-musllinux_1_1_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

envd-0.2.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.6-cp38-cp38-macosx_11_0_arm64.whl (18.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

envd-0.2.6-cp38-cp38-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

envd-0.2.6-cp37-cp37m-musllinux_1_1_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

envd-0.2.6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.6-cp37-cp37m-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

envd-0.2.6-cp36-cp36m-musllinux_1_1_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

envd-0.2.6-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.2.6-cp36-cp36m-macosx_10_9_x86_64.whl (18.8 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file envd-0.2.6.tar.gz.

File metadata

  • Download URL: envd-0.2.6.tar.gz
  • Upload date:
  • Size: 9.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for envd-0.2.6.tar.gz
Algorithm Hash digest
SHA256 9bbce7ae075c1d91809339f499355dc123c46d8e5b1fc1776b9e82ba5acd3ddd
MD5 5baaed258323f3f47100b9eaa98eb184
BLAKE2b-256 e903992c8cd2a05f5fbcb87984dd6027c0c03a97ec707c728be7a369bb530120

See more details on using hashes here.

File details

Details for the file envd-0.2.6-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.6-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 29485397a9c58c7296ff27777e3d4c46a1f5d49c936f8b86f533bdabd7137e6e
MD5 f4c1cf130f57ca8666ae778e9ad35403
BLAKE2b-256 f19761514ad4650fd7bd53bcd1a79e90460db7dd838114555240ba788e10160e

See more details on using hashes here.

File details

Details for the file envd-0.2.6-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.6-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.6-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9591db893bc15edc3f8db0a744f8a88af37b210902ff102d6497db076371ea48
MD5 91dd187f2ddffc1df9db3c40e197e6af
BLAKE2b-256 5a42fade838224c7926409acf742acb1e5e47bdbed0d1e0ae8b386c66e2711e1

See more details on using hashes here.

File details

Details for the file envd-0.2.6-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.6-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb67d942a19a92d0092b4b08220c7530c034ae77a7585af98bc00f49e83864b9
MD5 eb1b662e275c76a3cb071dfd883c6fa1
BLAKE2b-256 bd72e7035d201c7c15b8e5e4d253bf17d308a950be2c8bd125a58a0476004bad

See more details on using hashes here.

File details

Details for the file envd-0.2.6-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.6-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.6-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5d4f06536ebdb319d29974df2b03784100ff1a9b782d91ba05cb3c3927e33142
MD5 2449da77c99dbaca29ab1da04a964f99
BLAKE2b-256 3f8bc8cb70c76ae89b38ed90466aed77294ea7c126f5be5e1bd54b0166909317

See more details on using hashes here.

File details

Details for the file envd-0.2.6-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.6-pp37-pypy37_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f29b5d20c6d5c7042a3ddd029afc370d2911901b3de44277dc88d4b1f31e0b43
MD5 40a11b81daf44692010ec9e05cc2b6ab
BLAKE2b-256 32edfa3f65a1cf4554c7e46ffdcd678142d0d0bdb4e2f6b1b58ae224c3eb4917

See more details on using hashes here.

File details

Details for the file envd-0.2.6-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.6-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.6-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e30039df7bb8c2a6c3f0260daef15ea9c3b87006c425c56e211e04db2f5484a0
MD5 3821d1f26e834bb0d24a45ab4bc7eea8
BLAKE2b-256 c8c9a43023694ae9abf019a39fd2f3143f35726f2a330c2f74897385e25e7d45

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.6-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3384c85d329a67144e4942f5abf13487e4fa4a3339400dca860da3a68eafc55e
MD5 bf769ad7057c52fd930b53c2e703d655
BLAKE2b-256 ef63191b92bd14894b1de287f096f02a78ff96b2d99a4223372ced7b01eeadf1

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.6-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e109d1f952d9586a9cee73d0981337340773b49cc12ae196d165dba13d8e0399
MD5 87fd098627d98db4ff00b9984477d177
BLAKE2b-256 bdde41dab9fcfb139be5180917104105887b6223c49c5ac3c44bea4e012fe7cf

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.6-cp311-cp311-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.11, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0b3a3bbed0eb9e3d784edc2ffb6e049863a4e140abea6a54c42d86896da77270
MD5 36ff5ee43c6232aad5d0c3a47636b760
BLAKE2b-256 95fd4e4c287fe94904f83f8bb91c74e4aac696161f045c8d8b90c3c77c503aca

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.6-cp311-cp311-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.11, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.6-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 75a8def61efa7a3c01caae18148148f3076cf48e51432c2ab50079c6f7f7a610
MD5 e0494aa47266fc8beba0631391ed0d4d
BLAKE2b-256 b061421a87803f44c450916166b4af98ab4116b3da16388f06dfebb723ede0e2

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.6-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0f295e3dc63312e6fd1a222d5bd4ac18a53ec4338eb07d0bfa772475b6fbc75e
MD5 361137eb87967399e27f7df0599b5dfb
BLAKE2b-256 920e3a386f786df0f018edb48f2d96746ac7cdd06cafa8c84775202b87f811b6

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.6-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e98bc8f8d239637057ebc1e1be40cfabf0d409e92d5f737c5169576523951ef1
MD5 aa5fef7b913bd1eb5c4357663eebea9e
BLAKE2b-256 e35c4fad66957ca6da6f86ecd28607012a0531e9263629e097331dd69df3e2a3

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.6-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4ad1cb5221707ee011504549199e2ec101a775e6d63e7ae75ee3db025538f509
MD5 2a460d9a3d0d212adeb301180ad7f144
BLAKE2b-256 e16066bac9f6c9271cd21290132a5f800a1735644b43d2e5328a2e3c1b97865c

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.6-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 deecbf5ea686c1d34309051d4886a141b21f4896d0811273bd3cf0333eeb0d8c
MD5 a833096b88015d589c9392e7ffd9a5a0
BLAKE2b-256 0dbd69057df78022ebcd47c9ca03b1475ed9c4256e087cc689115d36e0ff669b

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.6-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4c534f8c9c3c6c748323e878accb47c1645cf4b37c13a31b58863d08a312e696
MD5 5e9a34e5ac47c4807288523f52fc3c89
BLAKE2b-256 d24a457c9f4b108752a4533cc128120a117d7d9bd3169de2fc5be1f777677bff

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51c13aca8add459b8612ed47592dc7e4ce29818059aca4b264c54597dfbb7a2f
MD5 f4657b6caada7d2750b4af0dc35c8514
BLAKE2b-256 ad6ae253a0f42ebe68b79c420ade48d27f4d44269670d524be89103a74b45170

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.6-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6c437028cfa2ec410c54a3972c3918f65b957c96ef216f220a38f0d470eaa312
MD5 b54f95ac43c75f4bd168fa411e3c5064
BLAKE2b-256 918210c292bbd317e2099e0caa31e4d270dc976aaab483969a12858d2cb0ed38

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.6-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8df6885e4be058288ef357190e4645ad522725c96cf75b0f753101cd1a01901f
MD5 a50f4cf948f510008095246c23f60c1d
BLAKE2b-256 b1d2c789ddcbad6c3841c90df28da7e916984c17daa1a88270078eb9cca4cf03

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.6-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8ea0fd56325c03bcaa583ca8d4238e2bc55fd2d9bcbe54fe084deb1e4fda5469
MD5 9b5e0e2569e622227d70f035d1afce5c
BLAKE2b-256 d21e26367a90b16849d5d39c555b1d119fa71729b5a6b17995e9a2a0dc2fd007

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8abedfd4ecbf1938a308122b5c9c93397707b2d7079d2e6f6b018252c6d734b9
MD5 981044cab35afac1f4e4cb7b98678872
BLAKE2b-256 297e074cb5eece70acbed57ab7fa35352cdedd0135dff3c726c37eaf1f58b55d

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.2.6-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b57d18d72d87401d37e9da4688a7006bc9c3328091e54759841e32554f345ca1
MD5 5b5916d580609ece0bb144dd17bb8b18
BLAKE2b-256 352b15dac1700b0b857d2e9e6b0762395b6ed5425dd715a935fd7f607b37bf5f

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.6-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 def2260d3efebd577c923f7924b7a6f28db755719bc4784d854a8ede574bc219
MD5 ff64b51b34ad1b557f42818291671c26
BLAKE2b-256 b4ccf1fc881a0fa67d83676d513094f8ee9e77ab1e9e6e53d9acdbfbf0b35f4a

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.6-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b92ee80b12c89c117473cd743f22795dc6115d278a3d5f07e62991b41498b42a
MD5 62f3b40e426740ced38e7447d09e9383
BLAKE2b-256 afdc04221f3efdcff5c6810d8a969421f3cd7543fa6d8f4c30d38738483c0a0f

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99ac83ec2355b2beb6c24f55135ece498ca32ed1b3abbfa09d8910e5a10b7daa
MD5 cf9fb43eaa3b8accd5008097f5927cb4
BLAKE2b-256 a424e0f4ae0e68b6bac92fe5983a554c606e50e68bae75c0343b1658c22f4c56

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.6-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 babac84fa4077514bb5ee8d631a45923e805e2542a3093c96ef1bdde2a2fa4f6
MD5 3f96329c8c2567e4f4b9d4a24fb112c9
BLAKE2b-256 3884a53362111b1b5972d71da1b91d7e4a18828cac9f8f7c31619bb4e17d2074

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.6-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5d69e4225ced671aade2d061bc26b5eec30ca8025c4eb1394071a17c84574f46
MD5 5ce954cf9b5a7e75d4141f3a46bafbda
BLAKE2b-256 e18aa9027874fcae7cec7b1910125b1356bfd4dd7259e81f092c834000c751da

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.2.6-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6607e6851147205084ea21d96616ee7276664874eb89537e4cdedefd6c12883d
MD5 8a88721e156bb2b60e9eb8369aa6e6fd
BLAKE2b-256 d06264b2677afb30bd9156e60920660faa65e19715db53ffe7c10922840e414d

See more details on using hashes here.

File details

Details for the file envd-0.2.6-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.2.6-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.2.6-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 48b2fb479872cfc378e6d06c2b3e425ea63d8df8dcf67f2ef0b391a409e8e8da
MD5 965b3ce4325721e8fb6d25a42bbee5e7
BLAKE2b-256 0024d67303f100e83013ba563eccd2891ef42e1d1bdd1e1711742ffad0a6b77c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page