Skip to main content

A development environment management tool for data scientists.

Project description

envd cat wink envd cat wink

Development environment for AI/ML

discord invitation link trackgit-views Python Version all-contributors envd package donwloads continuous integration Coverage Status

What is envd?

envd (ɪnˈvdɪ) is a command-line tool that helps you create the container-based development environment for AI/ML.

Creating development environments is not easy, especially with today's complex systems and dependencies. With everything from Python to CUDA, BASH scripts, and Dockerfiles constantly breaking, it can feel like a nightmare - until now!

Instantly get your environment running exactly as you need with a simple declaration of the packages you seek in build.envd and just one command: envd up!

Why use envd?

Environments built with envd provide the following features out-of-the-box:

Simple CLI and language

envd enables you to quickly and seamlessly integrate powerful CLI tools into your existing Python workflow to provision your programming environment without learning a new language or DSL.

def build():
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")
    config.jupyter()

Isolation, compatible with OCI image

With envd, users can create an isolated space to train, fine-tune, or serve. By utilizing sophisticated virtualization technology as well as other features like buildkit, it's an ideal solution for environment setup.

envd environment image is compatible with OCI image specification. By leveraging the power of an OCI image, you can make your environment available to anyone and everyone! Make it happen with a container registry like Harbor or Docker Hub.

Local, and cloud

envd can now be used on a hybrid platform, ranging from local machines to clusters hosted by Kubernetes. Any of these options offers an efficient and versatile way for developers to create their projects!

$ envd context use local
# Run envd environments locally
$ envd up
...
$ envd context use cluster
# Run envd environments in the cluster with the same experience
$ envd up

Check out the doc for more details.

Build anywhere, faster

envd offers a wealth of advantages, such as remote build and software caching capabilities like pip index caches or apt cache, with the help of buildkit - all designed to make your life easier without ever having to step foot in the code itself!

Reusing previously downloaded packages from the PyPI/APT cache saves time and energy, making builds more efficient. No need to redownload what was already acquired before – a single download is enough for repeat usage!

With Dockerfile v1, users are unable to take advantage of PyPI caching for faster installation speeds - but envd offers this support and more!

Besides, envd also supports remote build, which means you can build your environment on a remote machine, such as a cloud server, and then push it to the registry. This is especially useful when you are working on a machine with limited resources, or when you expect a build machine with higher performance.

Knowledge reuse in your team

Forget copy-pasting Dockerfile instructions - use envd to easily build functions and reuse them by importing any Git repositories with the include function! Craft powerful custom solutions quickly.

envdlib = include("https://github.com/tensorchord/envdlib")

def build():
    base(os="ubuntu20.04", language="python")
    envdlib.tensorboard(host_port=8888)
envdlib.tensorboard is defined in github.com/tensorchord/envdlib
def tensorboard(
    envd_port=6006,
    envd_dir="/home/envd/logs",
    host_port=0,
    host_dir="/tmp",
):
    """Configure TensorBoard.

    Make sure you have permission for `host_dir`

    Args:
        envd_port (Optional[int]): port used by envd container
        envd_dir (Optional[str]): log storage mount path in the envd container
        host_port (Optional[int]): port used by the host, if not specified or equals to 0,
            envd will randomly choose a free port
        host_dir (Optional[str]): log storage mount path in the host
    """
    install.python_packages(["tensorboard"])
    runtime.mount(host_path=host_dir, envd_path=envd_dir)
    runtime.daemon(
        commands=[
            [
                "tensorboard",
                "--logdir",
                envd_dir,
                "--port",
                str(envd_port),
                "--host",
                "0.0.0.0",
            ],
        ]
    )
    runtime.expose(envd_port=envd_port, host_port=host_port, service="tensorboard")

Getting Started 🚀

Requirements

  • Docker (20.10.0 or above)

Install and bootstrap envd

envd can be installed with pip, or you can download the binary release directly. After the installation, please run envd bootstrap to bootstrap.

pip3 install --upgrade envd

After the installation, please run envd bootstrap to bootstrap:

envd bootstrap

Read the documentation for more alternative installation methods.

You can add --dockerhub-mirror or -m flag when running envd bootstrap, to configure the mirror for docker.io registry:

envd bootstrap --dockerhub-mirror https://docker.mirrors.sjtug.sjtu.edu.cn

Create an envd environment

Please clone the envd-quick-start:

git clone https://github.com/tensorchord/envd-quick-start.git

The build manifest build.envd looks like:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")

Note that we use Python here as an example but please check out examples for other languages such as R and Julia here.

Then please run the command below to set up a new environment:

cd envd-quick-start && envd up
$ cd envd-quick-start && envd up
[+]  parse build.envd and download/cache dependencies 2.8s  (finished)
 => download oh-my-zsh                                                    2.8s
[+] 🐋 build envd environment 18.3s (25/25)  (finished)
 => create apt source dir                                                 0.0s
 => local://cache-dir                                                     0.1s
 => => transferring cache-dir: 5.12MB                                     0.1s
...
 => pip install numpy                                                    13.0s
 => copy /oh-my-zsh /home/envd/.oh-my-zsh                                 0.1s
 => mkfile /home/envd/install.sh                                          0.0s
 => install oh-my-zsh                                                     0.1s
 => mkfile /home/envd/.zshrc                                              0.0s
 => install shell                                                         0.0s
 => install PyPI packages                                                 0.0s
 => merging all components into one                                       0.3s
 => => merging                                                            0.3s
 => mkfile /home/envd/.gitconfig                                          0.0s
 => exporting to oci image format                                         2.4s
 => => exporting layers                                                   2.0s
 => => exporting manifest sha256:7dbe9494d2a7a39af16d514b997a5a8f08b637f  0.0s
 => => exporting config sha256:1da06b907d53cf8a7312c138c3221e590dedc2717  0.0s
 => => sending tarball                                                    0.4s
envd-quick-start via Py v3.9.13 via 🅒 envd
⬢ [envd] # You are in the container-based environment!

Set up Jupyter notebook

Please edit the build.envd to enable jupyter notebook:

def build():
    base(os="ubuntu20.04", language="python3")
    # Configure the pip index if needed.
    # config.pip_index(url = "https://pypi.tuna.tsinghua.edu.cn/simple")
    install.python_packages(name = [
        "numpy",
    ])
    shell("zsh")
    config.jupyter()

You can get the endpoint of the running Jupyter notebook via envd envs ls.

$ envd up --detach
$ envd envs ls
NAME                    JUPYTER                 SSH TARGET              CONTEXT                                 IMAGE                   GPU     CUDA    CUDNN   STATUS          CONTAINER ID
envd-quick-start        http://localhost:42779   envd-quick-start.envd   /home/gaocegege/code/envd-quick-start   envd-quick-start:dev    false   <none>  <none>  Up 54 seconds   bd3f6a729e94

More on documentation 📝

See envd documentation.

Roadmap 🗂️

Please checkout ROADMAP.

Contribute 😊

We welcome all kinds of contributions from the open-source community, individuals, and partners.

Open in Gitpod

Contributors ✨

Thanks goes to these wonderful people (emoji key):

 Friends A.
Friends A.

📖 🎨
Aaron Sun
Aaron Sun

📓 💻
Aka.Fido
Aka.Fido

📦 📖 💻
Alex Xi
Alex Xi

💻
Bingtan Lu
Bingtan Lu

💻
Bingyi Sun
Bingyi Sun

💻
Ce Gao
Ce Gao

💻 📖 🎨 📆
Frost Ming
Frost Ming

💻 📖
Guangyang Li
Guangyang Li

💻
Gui-Yue
Gui-Yue

💻
Haiker Sun
Haiker Sun

💻
Ikko Ashimine
Ikko Ashimine

💻
Isaac
Isaac

💻
JasonZhu
JasonZhu

💻
Jian Zeng
Jian Zeng

🎨 🤔 🔬
Jinjing Zhou
Jinjing Zhou

🐛 💻 🎨 📖
Jun
Jun

📦 💻
Kaiyang Chen
Kaiyang Chen

💻
Keming
Keming

💻 📖 🤔 🚇
Kevin Su
Kevin Su

💻
Ling Jin
Ling Jin

🐛 🚇
Manjusaka
Manjusaka

💻
Nino
Nino

🎨 💻
Pengyu Wang
Pengyu Wang

📖
Sepush
Sepush

📖
Siyuan Wang
Siyuan Wang

💻 🚇 🚧
Suyan
Suyan

📖
To My
To My

📖
Tumushimire Yves
Tumushimire Yves

💻
Wei Zhang
Wei Zhang

💻
Weixiao Huang
Weixiao Huang

💻
Weizhen Wang
Weizhen Wang

💻
XRW
XRW

💻
Xu Jin
Xu Jin

💻
Xuanwo
Xuanwo

💬 🎨 🤔 👀
Yijiang Liu
Yijiang Liu

💻
Yilong Li
Yilong Li

📖 🐛 💻
Yuan Tang
Yuan Tang

💻 🎨 📖 🤔
Yuchen Cheng
Yuchen Cheng

🐛 🚇 🚧 🔧
Yuedong Wu
Yuedong Wu

💻
Yunchuan Zheng
Yunchuan Zheng

💻
Zheming Li
Zheming Li

💻
Zhenguo.Li
Zhenguo.Li

💻 📖
Zhenzhen Zhao
Zhenzhen Zhao

🚇 📓 💻
Zhizhen He
Zhizhen He

💻 📖
cutecutecat
cutecutecat

💻
dqhl76
dqhl76

📖 💻
jimoosciuc
jimoosciuc

📓
kenwoodjw
kenwoodjw

💻
li mengyang
li mengyang

💻
nullday
nullday

🤔 💻
rrain7
rrain7

💻
tison
tison

💻
wangxiaolei
wangxiaolei

💻
wyq
wyq

🐛 🎨 💻
x0oo0x
x0oo0x

💻
xiangtianyu
xiangtianyu

📖
xieydd
xieydd

💻
xing0821
xing0821

🤔 📓 💻
xxchan
xxchan

📖
zhyon404
zhyon404

💻
杨成锴
杨成锴

💻

This project follows the all-contributors specification. Contributions of any kind welcome!

License 📋

Apache 2.0

trackgit-views

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

envd-0.3.13.tar.gz (9.6 MB view details)

Uploaded Source

Built Distributions

envd-0.3.13-py2.py3-none-musllinux_1_1_x86_64.whl (9.4 MB view details)

Uploaded Python 2 Python 3 musllinux: musl 1.1+ x86-64

envd-0.3.13-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.4 MB view details)

Uploaded Python 2 Python 3 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

envd-0.3.13-py2.py3-none-macosx_11_0_arm64.whl (19.3 MB view details)

Uploaded Python 2 Python 3 macOS 11.0+ ARM64

envd-0.3.13-py2.py3-none-macosx_10_9_x86_64.whl (19.3 MB view details)

Uploaded Python 2 Python 3 macOS 10.9+ x86-64

File details

Details for the file envd-0.3.13.tar.gz.

File metadata

  • Download URL: envd-0.3.13.tar.gz
  • Upload date:
  • Size: 9.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for envd-0.3.13.tar.gz
Algorithm Hash digest
SHA256 71edf69a4f4b8617fdaf661552cdefca8b6fe83b084a8a27384eb68843527638
MD5 e2a3d2c95d1a9e835b48a0a8ed55d828
BLAKE2b-256 611d189446f1bc56ec93eca02d91fc84bdb7f4de6dee7f543f5af38a5390c136

See more details on using hashes here.

File details

Details for the file envd-0.3.13-py2.py3-none-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.13-py2.py3-none-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2421d3864b2a0cff6a8e87360ac8af612b2208ca987867e3c30af41c7d94de95
MD5 bf76cf1e0427ad7eb7fd6d91548d9bcf
BLAKE2b-256 927fcc8eb41340236d1a80522bb6bfa9a28f5fd3dbed3f3bf7309850cdd153fb

See more details on using hashes here.

File details

Details for the file envd-0.3.13-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for envd-0.3.13-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 121f65947bf500fbe4546204f6b92b19edd008dbed3e1503e87e5dc6c5fc3445
MD5 849dea092c15ff363428cb27619c993b
BLAKE2b-256 dcf91e303a2296b3ee7ebdb8dfe441e2ce4a8deff98c31d54fc4b25a44690c01

See more details on using hashes here.

File details

Details for the file envd-0.3.13-py2.py3-none-macosx_11_0_arm64.whl.

File metadata

  • Download URL: envd-0.3.13-py2.py3-none-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 19.3 MB
  • Tags: Python 2, Python 3, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.3.13-py2.py3-none-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 355b894f040d74d0abaafef1f8f184745362e75f6fbb350cbee89c277dbe8f34
MD5 fe853417b73f0c7198478cc489657b32
BLAKE2b-256 5b63f8300c63a68fd3159078b1096e1641b0f62fb77e42c05b353adf73ecf1e4

See more details on using hashes here.

File details

Details for the file envd-0.3.13-py2.py3-none-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: envd-0.3.13-py2.py3-none-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 19.3 MB
  • Tags: Python 2, Python 3, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.3 requests/2.27.1 setuptools/41.2.0 requests-toolbelt/0.10.1 tqdm/4.64.1 CPython/2.7.18

File hashes

Hashes for envd-0.3.13-py2.py3-none-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 314fd7c3cfcea56b09062e243cee20d7b25f58ba45e09c5a4260a73cf837e88e
MD5 4bac49582fffa40be1f3b3fd013de65f
BLAKE2b-256 b30944d6e32b1f5169f1180cf45f37a06b332e325f2fca93df6489fd469aac57

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page