A library to create interactive maps of geographical datasets.
Project description
EOmaps
... a library to create interactive maps of geographical datasets
- 🌍 A simple interface to visualize geographical datasets ... a pandas DataFrame is all you need!
- ⬥ applicable also for large datasets with ~ 1M datapoints!
- 🌎 Quickly turn your maps into powerful interactive data-analysis widgets!
- ⬥ compare multiple data-layers, WebMaps etc. with only a few lines of code!
- ⬥ use callback functions to interact with the data (or an underlying database)
🛸 checkout the documentation for more details and examples 🛸
🔨 installation
Installing EOmaps can be done via pip
.
However, to make sure all dependencies are correctly installed, make sure to have a look at the installation instructions in the documentation!
🌳 basic usage
- A pandas DataFrame is all you need as input!
- plots of large (>1M datapoints) irregularly sampled datasets are generated in a few seconds!
- Represent your data as shapes with actual geographic dimensions
- Re-project the data to any crs supported by
cartopy
- Add annotations, overlays, WebMap-layers etc. to the maps
- ... and get a nice colorbar with a colored histogram on top!
import pandas as pd
from eomaps import Maps
# the data you want to plot
data = pd.DataFrame(dict(lat=[...], lon=[...], value=[...]))
# initialize Maps object
m = Maps()
# set the data
m.set_data(data=data, xcoord="lon", ycoord="lat", parameter="value", crs=4326)
# set the shapes that you want to use to represent the data-points
m.set_shape.geod_circles(radius=10000) # (e.g. geodetic circles with 10km radius)
# set the appearance of the plot
m.set_plot_specs(crs=Maps.CRS.Orthographic(), cmap="viridis")
# (optionally) classify the data
m.set_classify_specs(scheme=Maps.CLASSIFIERS.Quantiles, k=5)
# plot the map
m.plot_map()
attach callback functions to interact with the plot
- Many pre-defined functions for common tasks are available!
- display coordinates and values, add markers, compare data-layers etc.
- ... or define your own function and attach it to the plot!
- Maps objects can be interactively connected to analyze relations between datasets!
# get a nice annotation if you click on a datapoint
m.cb.pick.attach.annotate()
# draw a marker if you click on a datapoint
m.cb.pick.attach.mark(facecolor="r", edgecolor="g", shape="rectangles", radius=1, radius_crs=4326)
# show the data-layer `1` in a inset-rectangle (size=20% width of the axes) if you click on the map
m.cb.click.attach.peek_layer(how=0.2, layer=1)
#attach some custom function to interact with the map
m.cb.click.attach(<... a custom function ...>)
# show the data-layer `1` if you press "a" on the keyboard and the layer `0` if you press "q"
m.cb.keypress.attach.switch_layer(layer=0, key="q")
m.cb.keypress.attach.switch_layer(layer=1, key="a")
add additional layers and overlays
m.add_wms(...) # add WebMapService layers
m.add_wms(...) # add WebMapTileService layers
m.add_gdf(...) # add geo-dataframes
m.add_overlay(...) # add overlay-layers from NaturalEarth
m.add_annotation(...) # add static annotations
m.add_marker(...) # add static markers
save the figure
m.savefig("oooh_what_a_nice_figure.png", dpi=300)
advanced usage
connect Maps-objects to get multiple interactive layers of data!
m = Maps()
...
m.plot_map()
m2 = Maps(parent=m) # connect Maps to get multiple interactive data-layers
m2.set_data(...)
m2.set_shape(...)
...
m2.plot_map(layer=2) # plot another layer of data
m2.cb.attach.peek_layer(layer=2, how=0.25)
plot grids of maps
from eomaps import MapsGrid
mgrid = MapsGrid(2, 2, connect=True)
for m in mgrid:
m.plot_specs.plot_crs = 3857
mgrid.ax_0_0.plot_map()
mgrid.ax_0_1.plot_map()
mgrid.ax_1_0.plot_map()
mgrid.ax_1_1.plot_map()
mgrid.parent.join_limits(*mgrid.children) # join limits
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
EOmaps-2.1.1.tar.gz
(74.3 kB
view hashes)
Built Distribution
EOmaps-2.1.1-py3-none-any.whl
(75.4 kB
view hashes)