Skip to main content

A library to create interactive maps of geographical datasets.

Project description

tests codecov       pypi Conda Version       Documentation Status Buy Me A Coffee


A library to create interactive maps of geographical datasets.

  • 🌍 EOmaps provides a simple and intuitive interface to visualize and interact with geographical datasets
    • ⬥ Data can be provided as 1D or 2D lists, numpy-arrays or pandas.DataFrames
    •       ... usable also for large datasets with > 1M datapoints!
    • ⬥ WebMap layers, annotations, markers can be added with a single line of code
    • ⬥ EOmaps is built on top of matplotlib and cartopy and integrates well pandas and geopandas
  • 🌎 Quickly turn your maps into powerful interactive data-analysis widgets
    • ⬥ use callback functions to interact with the data (or an underlying database)
    • ⬥ compare multiple data-layers, WebMaps etc.

🌲🌳 Checkout the documentation for more details and examples 🌳🌲

🔨 Installation

To install EOmaps (and all its dependencies) via the conda package-manager, simply use:

conda install -c conda-forge eomaps

For more information, have a look at the installation instructions in the documentation!

🚀 Contribute

Found a bug or got an idea for an interesting feature? Open an issue or start a discussion and I'll see what I can do!
(I'm of course also happy about actual pull requests on features and bug-fixes!)


EOmaps example image 2 EOmaps example image 1 EOmaps example image 3 EOmaps example image 1 EOmaps example image 1 EOmaps example image 1

🌳 Basic usage

🛸 Checkout the documentation! 🛸

  • A list of coordinates and values is all you need as input!
    • plots of large (>1M datapoints) irregularly sampled datasets are generated in a few seconds!
  • Represent your data
    • as shapes with actual geographic dimensions (ellipses, rectangles, geodetic circles)
    • via Voroni diagrams and Delaunay triangulations to get interpolated contour-plots
    • via dynamic data-shading to speed up plots with extremely large datasets
  • Re-project the data to any crs supported by cartopy
  • Quickly add features and additional layers to the plot
    • Markers, Annotations, WebMap Layers, NaturalEarth features, Scalebars, Compasses (or North-arrows) etc.
  • Interact with the data via callback-functions.
import pandas as pd
from eomaps import Maps

# the data you want to plot
lon, lat, data = [1,2,3,4,5], [1,2,3,4,5], [1,2,3,4,5]

# initialize Maps object
m = Maps(crs=Maps.CRS.Orthographic())

# set the data
m.set_data(data=data, xcoord=lon, ycoord=lat, crs=4326)
# set the shape you want to use to represent the data-points
m.set_shape.geod_circles(radius=10000) # (e.g. geodetic circles with 10km radius)

# (optionally) set the appearance of the plot
m.set_plot_specs(cmap="viridis", label="a nice label")
# (optionally) classify the data
m.set_classify_specs(scheme=Maps.CLASSIFIERS.Quantiles, k=5)

# plot the map
m.plot_map()

# add a colorbar with a histogram on top
m.add_colorbar()

# add a scalebar
m.add_scalebar()

# add a compass
m.add_compass()

# add some basic features from NaturalEarth
m.add_feature.preset.coastline()

# use callback functions make the plot interactive!
m.cb.pick.attach.annotate()

# ---- add another plot-layer on a different level (1) to the map
#      (by default only layer 0 is shown!)
m3 = m.new_layer(layer=1)
...
# peek on layer 1 if you click on the map
m.cb.click.attach.peek_layer(layer=1, how=0.4)
# switch between the layers if you press "0" or "1" on the keyboard
m.cb.keypress.attach.switch_layer(layer=0, key="0")
m.cb.keypress.attach.switch_layer(layer=1, key="1")

# ---- add new layers directly from a GeoTIFF / NetCDF or CSV files
m4 = m.new_layer_from_file.GeoTIFF(...)
m4 = m.new_layer_from_file.NetCDF(...)
m4 = m.new_layer_from_file.CSV(...)

🌼 Thanks to

Project details


Release history Release notifications | RSS feed

This version

3.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

EOmaps-3.1.tar.gz (187.6 kB view hashes)

Uploaded Source

Built Distribution

EOmaps-3.1-py3-none-any.whl (188.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page