Skip to main content

Earth Observation Training Data Lab

Project description

EOTDL

Explore, download, create and share your own Training Datasets and Machine Learning models for Earth Observation

Website · Documentation · Datasets · Blog

NPM Version

This is the main library and CLI for the Earth Observation Training Data Lab (EOTDL), a complete environment that allows you, among other things, to:

  • Explore and download Training Datasets (TDS) for Earth Observation (EO) applications.
  • Create and upload your own TDS by combining and annotating EO data from different sources.
  • Train Machine Learning (ML) models using the hosted TDS in the cloud with multi-GPU machines.
  • Explore and download pre-trianed ML models for EO applications.

In our blog you will find tutorials to learn how leverage the EOTDL to create and use TDS and ML models for your own EO applications.

Why EOTDL?

One of the most limiting factors of AI for EO applications is the scarcity of suitable and accessible Training Datasets (TDS). As the name suggests, TDS are used to train an AI model to perform a specific task. Currently, the main barrier is that gathering and labelling EO data is a convoluted process. Some techniques exist that can help alleviate this issue, for example transfer learning or unsupervised learning, but annotated data is always required for fine-tuning and final validation of AI models.

Generating TDS is time consuming and expensive. Data access is usually limited and costly, especially for Very High Resolution (VHR) images that allow objects like trees to be clearly identified. In some cases, domain experts or even in-person (in-situ) trips are required to manually confirm the objects in a satellite image are correctly annotated with a high degree of quality. This results in the field of AI for EO applications lagging when compared to other fields, impeding the development of new applications and limiting the full potential of AI in EO.

The European Space Agency (ESA) Earth Observation Training Data Lab (EOTDL) will address key limitations and capability gaps for working with Machine Learning (ML) training data in EO by providing a set of open-source tools to create, share, and improve datasets as well as training ML algorithms in the cloud. EOTDL will also offer an online repository where datasets and models can be explored and accessed.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eotdl-2024.10.7.tar.gz (53.7 kB view details)

Uploaded Source

Built Distribution

eotdl-2024.10.7-py3-none-any.whl (80.0 kB view details)

Uploaded Python 3

File details

Details for the file eotdl-2024.10.7.tar.gz.

File metadata

  • Download URL: eotdl-2024.10.7.tar.gz
  • Upload date:
  • Size: 53.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.5 Linux/6.8.0-45-generic

File hashes

Hashes for eotdl-2024.10.7.tar.gz
Algorithm Hash digest
SHA256 b9ed442a35be41fa9c2810b65fd145fcc013fce2a2782bd1c5a966ede448f057
MD5 9825d19b7dc453cc427dae1fb38816e4
BLAKE2b-256 51c0548427225cfee480de4dd1d4b824d0b10634448d4744edcc5138b667517e

See more details on using hashes here.

File details

Details for the file eotdl-2024.10.7-py3-none-any.whl.

File metadata

  • Download URL: eotdl-2024.10.7-py3-none-any.whl
  • Upload date:
  • Size: 80.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.2 CPython/3.11.5 Linux/6.8.0-45-generic

File hashes

Hashes for eotdl-2024.10.7-py3-none-any.whl
Algorithm Hash digest
SHA256 dd00cd065a388b7329e71df71ecba9d320b4f0e5db50af65af157868826d7a3c
MD5 cfd76b9846813633326613ba5f91891a
BLAKE2b-256 b679bfbfbe19c92cbbbee6bc5c8cf2836c1d30f2bb4984c8ba0fa0da4453caaf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page