Skip to main content

Statistical package to evaluate ab tests in experimentation platform.

Project description

PyPI version Python versions Code style Code style

ep-stats

Statistical package for the experimentation platform.

It provides a general Python package and REST API that can be used to evaluate any metric in an AB test experiment.

Features

  • Robust two-tailed t-test implementation with multiple p-value corrections and delta methods applied.
  • Sequential evaluations allow experiments to be stopped early.
  • Connect it to any data source to get either pre-aggregated or per randomization unit data.
  • Simple expression language to define arbitrary metrics.
  • Sample size estimation.
  • REST API to integrate it as a service in experimentation portal with score cards.

Documentation

We have got a lovely documentation.

Base Example

ep-stats allows for a quick experiment evaluation. We are using sample testing data to evaluate metric Click-through Rate in experiment test-conversion.

from epstats.toolkit import Experiment, Metric, SrmCheck
experiment = Experiment(
    'test-conversion',
    'a',
    [Metric(
        1,
        'Click-through Rate',
        'count(test_unit_type.unit.click)',
        'count(test_unit_type.global.exposure)'),
    ],
    [SrmCheck(1, 'SRM', 'count(test_unit_type.global.exposure)')],
    unit_type='test_unit_type')

# This gets testing data, use other Dao or get aggregated goals in some other way.
from epstats.toolkit.testing import TestData
goals = TestData.load_goals_agg(experiment.id)

# evaluate experiment
ev = experiment.evaluate_agg(goals)

ev contains evaluations of exposures, metrics, and checks. This will provide the following output.

ev.exposures:

exp_id exp_variant_id exposures
test-conversion a 21
test-conversion b 26

ev.metrics:

exp_id metric_id metric_name exp_variant_id count mean std sum_value confidence_level diff test_stat p_value confidence_interval standard_error degrees_of_freedom
test-conversion 1 Click-through Rate a 21 0.238095 0.436436 5 0.95 0 0 1 1.14329 0.565685 40
test-conversion 1 Click-through Rate b 26 0.269231 0.452344 7 0.95 0.130769 0.223152 0.82446 1.18137 0.586008 43.5401

ev.checks:

exp_id check_id check_name variable_id value
test-conversion 1 SRM p_value 0.465803
test-conversion 1 SRM test_stat 0.531915
test-conversion 1 SRM confidence_level 0.999000

Installation

You can install this package via pip.

pip install ep-stats

Running

You can run a testing version of ep-stats via

python -m epstats

Then, see Swagger on http://localhost:8080/docs for API documentation.

Contributing

To get started locally, you can clone the repo and quickly get started using the Makefile.

git clone https://github.com/avast/ep-stats.git
cd ep-stats
make install-dev

It sets a new virtual environment .venv in ./.venv using .venv, installs all development dependencies, and sets pre-commit git hooks to keep the code neatly formatted with ruff.

To run tests, you can use Makefile as well.

poetry shell  # activate python environment
make check

To run a development version of ep-stats do

poetry shell
python -m epstats

Documentation

To update documentation run

mkdocs gh-deploy

It updates documentation in GitHub pages stored in branch gh-pages.

Inspiration

Software engineering practices of this package have been heavily inspired by marvelous calmcode.io site managed by Vincent D. Warmerdam.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ep_stats-2.5.1.tar.gz (54.1 kB view details)

Uploaded Source

Built Distribution

ep_stats-2.5.1-py3-none-any.whl (55.5 kB view details)

Uploaded Python 3

File details

Details for the file ep_stats-2.5.1.tar.gz.

File metadata

  • Download URL: ep_stats-2.5.1.tar.gz
  • Upload date:
  • Size: 54.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for ep_stats-2.5.1.tar.gz
Algorithm Hash digest
SHA256 cf1b7dda047aa9b6ceb45c60cded11dbb6c8347a8b67f538efec75fbe81b4a92
MD5 f742c862ffebf16ed77e1cbc584fca7d
BLAKE2b-256 a09616d423dfe4e6418ef569fe191dd285a900c79673ce67e57ae3a875ad859b

See more details on using hashes here.

File details

Details for the file ep_stats-2.5.1-py3-none-any.whl.

File metadata

  • Download URL: ep_stats-2.5.1-py3-none-any.whl
  • Upload date:
  • Size: 55.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for ep_stats-2.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 534643669546d4e7e37703fcd8267eed66224c49006f9665df0b03d9858765a8
MD5 e02c703127fc2595feb684ddd45b5e10
BLAKE2b-256 adf82e1b03998e6a9bdf809a41f1d8325b8cfd5b31b18e2a476eb5a3bdeb34cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page