EPA region definitions and representations in
Project description
epa-regions-python
EPA regions with GeoPandas / regionmask.
Code
python -m epa_regions -r 50m --states-only --save
Installation
conda activate ...
conda install -c conda-forge geopandas regionmask pooch pyogrio
pip install epa-regions
Usage
import epa_regions
# GeoPandas GeoDataFrame
epa = epa_regions.get(resolution="50m")
# Convert to regionmask Regions for use with gridded data
epa = epa_regions.to_regionmask(epa)
Point data
Code
import geopandas as gpd
import matplotlib.pyplot as plt
import numpy as np
import epa_regions
rng = np.random.default_rng(seed=123)
epa = epa_regions.get(resolution="50m")
# CONUS
lonmin, lonmax = -125, -66
latmin, latmax = 24, 50
n = 250
lon = rng.uniform(lonmin, lonmax, n)
lat = rng.uniform(latmin, latmax, n)
points = gpd.GeoDataFrame(
geometry=gpd.points_from_xy(lon, lat, crs="EPSG:4326")
)
fig, ax = plt.subplots(constrained_layout=True, figsize=(4, 2.5))
epa.plot(column="number", ax=ax, alpha=0.6)
points.sjoin(epa, predicate="within").plot(column="number", ax=ax, ec="0.3", lw=1)
ax.set(xlim=(lonmin, lonmax), ylim=(latmin, latmax))
ax.axis("off")
fig.savefig("points.png", dpi="figure", bbox_inches="tight")
Gridded data
Code
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import xarray as xr
import epa_regions
epa = epa_regions.to_regionmask(epa_regions.get(resolution="50m"))
# CONUS
lonmin, lonmax = -125, -66
latmin, latmax = 24, 50
ds = (
xr.tutorial.open_dataset("air_temperature")
.sel(lon=slice(lonmin + 360, lonmax + 360), lat=slice(latmax, latmin))
)
mask = epa.mask(ds.isel(time=0))
proj = ccrs.LambertConformal(central_longitude=-100)
tran = ccrs.PlateCarree()
fig = plt.figure(figsize=(6, 6), constrained_layout=True)
ax = fig.add_subplot(3, 1, (1, 2), projection=proj)
mask.plot.pcolormesh(
levels=np.arange(mask.min() - 0.5, mask.max() + 1),
ax=ax,
transform=ccrs.PlateCarree(),
cmap="tab10",
cbar_kwargs=dict(
orientation="horizontal",
fraction=0.075,
pad=0.05,
ticks=np.arange(mask.min(), mask.max() + 1),
format="R{x:.0f}",
label="EPA Region",
),
)
ax.add_feature(cfeature.STATES, linewidth=0.7, edgecolor="0.3")
ax.coastlines()
ax.set_extent([lonmin, lonmax - 2, latmin, latmax], crs=tran)
ax.set_title("")
ax = fig.add_subplot(3, 1, 3)
(dt,) = np.unique(ds.time.diff("time"))
window = pd.Timedelta("30D")
(
ds["air"].groupby(mask)
.mean()
.rolling(time=int(window / dt), center=True)
.mean()
.plot(
hue="mask",
ax=ax,
add_legend=False,
)
)
ax.set_xlabel("")
ax.text(
0.01,
0.97,
f"{window.total_seconds() / 86400:g}-day rolling mean",
ha="left",
va="top",
transform=ax.transAxes,
fontsize=11,
)
fig.savefig("gridded.png", dpi="figure", bbox_inches="tight")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
epa_regions-0.0.3.tar.gz
(9.9 kB
view details)
Built Distribution
File details
Details for the file epa_regions-0.0.3.tar.gz
.
File metadata
- Download URL: epa_regions-0.0.3.tar.gz
- Upload date:
- Size: 9.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.28.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 97c98fab0cc19cfd85b30f07f2a85144fc9d716bbee6146cf1c5d6264f089d25 |
|
MD5 | cfaa60fa6efd5e6cb5db6a42bbe4cbcb |
|
BLAKE2b-256 | 9b1a453c5d4731ff67230b7f3418220367e76275fc8c2f240c0ef32905978aa4 |
File details
Details for the file epa_regions-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: epa_regions-0.0.3-py3-none-any.whl
- Upload date:
- Size: 8.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: python-requests/2.28.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 21b73e4b64c754504e36732c16cc399bb65af8484b8ce3100cf6f7650c6ba8cf |
|
MD5 | c8b7685b6c6a80408cc49b7de4e2a195 |
|
BLAKE2b-256 | db4a6e6c78c8543956b843a78d3efd32cd065ee39ddfcd67778c1bd732dcdf73 |