Skip to main content

EPA region definitions and representations in

Project description

epa-regions-python

EPA regions with GeoPandas / regionmask.

Version on PyPI

regions

Code
python -m epa_regions -r 50m --states-only --save

Installation

conda activate ...
conda install -c conda-forge geopandas regionmask pooch pyogrio
pip install epa-regions

Usage

import epa_regions

# GeoPandas GeoDataFrame
epa = epa_regions.get(resolution="50m")

# Convert to regionmask Regions for use with gridded data
epa = epa_regions.to_regionmask(epa)

Point data

points

Code
import geopandas as gpd
import matplotlib.pyplot as plt
import numpy as np

import epa_regions

rng = np.random.default_rng(seed=123)

epa = epa_regions.get(resolution="50m")

# CONUS
lonmin, lonmax = -125, -66
latmin, latmax = 24, 50
n = 250
lon = rng.uniform(lonmin, lonmax, n)
lat = rng.uniform(latmin, latmax, n)
points = gpd.GeoDataFrame(
    geometry=gpd.points_from_xy(lon, lat, crs="EPSG:4326")
)

fig, ax = plt.subplots(constrained_layout=True, figsize=(4, 2.5))

epa.plot(column="number", ax=ax, alpha=0.6)
points.sjoin(epa, predicate="within").plot(column="number", ax=ax, ec="0.3", lw=1)

ax.set(xlim=(lonmin, lonmax), ylim=(latmin, latmax))
ax.axis("off")

fig.savefig("points.png", dpi="figure", bbox_inches="tight")

Gridded data

gridded

Code
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import xarray as xr

import epa_regions

epa = epa_regions.to_regionmask(epa_regions.get(resolution="50m"))

# CONUS
lonmin, lonmax = -125, -66
latmin, latmax = 24, 50

ds = (
    xr.tutorial.open_dataset("air_temperature")
    .sel(lon=slice(lonmin + 360, lonmax + 360), lat=slice(latmax, latmin))
)
mask = epa.mask(ds.isel(time=0))

proj = ccrs.LambertConformal(central_longitude=-100)
tran = ccrs.PlateCarree()

fig = plt.figure(figsize=(6, 6), constrained_layout=True)

ax = fig.add_subplot(3, 1, (1, 2), projection=proj)

mask.plot.pcolormesh(
    levels=np.arange(mask.min() - 0.5, mask.max() + 1),
    ax=ax,
    transform=ccrs.PlateCarree(),
    cmap="tab10",
    cbar_kwargs=dict(
        orientation="horizontal",
        fraction=0.075,
        pad=0.05,
        ticks=np.arange(mask.min(), mask.max() + 1),
        format="R{x:.0f}",
        label="EPA Region",
    ),
)

ax.add_feature(cfeature.STATES, linewidth=0.7, edgecolor="0.3")
ax.coastlines()
ax.set_extent([lonmin, lonmax - 2, latmin, latmax], crs=tran)
ax.set_title("")

ax = fig.add_subplot(3, 1, 3)

(dt,) = np.unique(ds.time.diff("time"))

window = pd.Timedelta("30D")
(
    ds["air"].groupby(mask)
    .mean()
    .rolling(time=int(window / dt), center=True)
    .mean()
    .plot(
        hue="mask",
        ax=ax,
        add_legend=False,
    )
)

ax.set_xlabel("")
ax.text(
    0.01,
    0.97,
    f"{window.total_seconds() / 86400:g}-day rolling mean",
    ha="left",
    va="top",
    transform=ax.transAxes,
    fontsize=11,
)

fig.savefig("gridded.png", dpi="figure", bbox_inches="tight")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

epa_regions-0.0.3.tar.gz (9.9 kB view hashes)

Uploaded Source

Built Distribution

epa_regions-0.0.3-py3-none-any.whl (8.4 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page