Skip to main content

A package to simulate compartmental epidemic models

Project description

epidemik

Compartmental Epidemic Models in Python

GitHub Release PyPI - Downloads GitHub followers GitHub forks GitHub Repo stars GitHub License GitHub commit activity GitHub last commit GitHub code size in bytes


Table of contents


Installation

Use the package manager pip to install epidemik.

pip install epidemik

Tech Stack

Here's a brief high-level overview of the tech stack the epidemik package uses:

  • The model is implemented as a directed multigraph using networkx
  • Ordinary Differential Equations are numerically integrated using scipy
  • Random numbers are generated by numpy
  • Model structure visualizations rely on matplotlib
  • Progress bars generated by tqdm

Basic Usage

epidemik provides three main modules, EpiModel, NetworkEpiModel and MetaEpiModel, usually imported directly from the epidemik package using the module name

from epidemik import EpiModel
  • EpiModel -e Simple compartmental model in a homogeneously mixed population.
  • NetworkEpiModel - Compartmental model on a network where nodes interact only along edges connecting them.
  • MetaEpiModel - Meta population model where populations interact with one another along the edges of a network. Each sub-population has it's own internal EpiModel instance.

To instantiate a new compartmental model we just need to create a EpiModel object and add the relevant transitions:

beta = 0.2
mu = 0.1

SIR = EpiModel()
SIR.add_interaction('S', 'I', 'I', beta)
SIR.add_spontaneous('I', 'R', mu)

This fully defines the model. We can get a textual representation of the model using

print(SIR)

resulting in a simple description of hte model structure.

Epidemic Model with 3 compartments and 2 transitions:

S + I = I 0.200000
I -> R 0.100000

R0=2.00

or a graphical representation by calling draw_model():

SIR.draw_model()

The models value of the Basic Reproductive Number (R0) can be determined using the R0() function:

SIR.R0()

There are two ways to explore the dynamics of the model, each with it's corresponding method.

To integrate numerically the Ordinary Differential Equations that describe the model dynamics, we can call the integrate() method. The first argument is the number of time steps to integrate over and the remaining arguments are the initial populations of each compartment.

N = 10_000
I0 = 10

SIR.integrate(365, S=N-I0, I=I0, R=0)

The results of the integration are stored in the values_ field. A quick visualization of the results can be obtained using:

SIR.plot()

which produces:


Documentation

The full documentation for this project is available at ReadTheDocs in html, PDF and ePub formats.


Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

Join our project and provide assistance by:

Contact us for the feedback or new ideas.


Spread The Word

If you want to say thank you and/or support active development of the epidemik package:

  • Add a GitHub star epidemik to the repository to encourage contributors and helps to grow our community.
  • Tweet about the project on your Twitter!

Thank you so much for your interest in growing our community!


License

epidemik is free and open-source software licensed under the MIT License [2024] - Bruno Gonçalves, Data For Science, Inc. Please have a look at the LICENSE.md for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

epidemik-0.1.tar.gz (15.5 kB view details)

Uploaded Source

Built Distribution

epidemik-0.1-py3-none-any.whl (14.2 kB view details)

Uploaded Python 3

File details

Details for the file epidemik-0.1.tar.gz.

File metadata

  • Download URL: epidemik-0.1.tar.gz
  • Upload date:
  • Size: 15.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.7

File hashes

Hashes for epidemik-0.1.tar.gz
Algorithm Hash digest
SHA256 75a00178483a81fbbe5467d850cb4f8ac54960781c3927bd54e44539994aabbe
MD5 e42a769b24c7b51f6997c74676de7ce7
BLAKE2b-256 65659bbe068a4712a453b1212fe8a29ef3616f7aea912683aa0b61a058f3494a

See more details on using hashes here.

File details

Details for the file epidemik-0.1-py3-none-any.whl.

File metadata

  • Download URL: epidemik-0.1-py3-none-any.whl
  • Upload date:
  • Size: 14.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.7

File hashes

Hashes for epidemik-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9c10a7f6a2818f29b9c25c76030ab6bba7a5e68399cc5f39c92b6e6b6e0e70dd
MD5 855bb0faa86ffbd1f0a1baa79c5eeeeb
BLAKE2b-256 a7298bcf2528a58fdf22f97f892757a59c2e95c2c0487408187e580795b7bb9b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page