Epigos AI Python SDK
Project description
Epigos Python
Epigos provides an end-to-end platform to annotate data, train computer vision AI models, deploy them seamlessly and host the models via API's.
For more details, visit epigos.ai.
The Epigos Python Package is a python wrapper around the core Epigos AI web application and REST API.
Installation
To install this package, please use Python 3.9
or higher.
To add epigos
to your project simply install with pip:
pip install epigos
Or with poetry
poetry add epigos
Getting Started
To make your first API call, you will need to signup at epigos.ai and create an API key for your workspace. Please contact our sales team for a demo.
Initialization:
import epigos
client = epigos.Epigos("api_key")
Project:
Manage project and upload dataset into your project using the Project ID
.
Upload an image with annotation
import epigos
from epigos.typings import BoxFormat
client = epigos.Epigos("api_key")
# load project
project = client.project("project_id")
# upload image with Pascal VOC annotation
record = project.upload(
"path/to/image.jpg",
annotation_path="path/to/image.xml",
box_format=BoxFormat.pascal_voc
)
print(record)
# upload image with COCO annotation
record = project.upload(
"path/to/image.jpg",
annotation_path="path/to/coco.json",
box_format=BoxFormat.coco
)
print(record)
# upload image with YOLO annotation
record = project.upload(
"path/to/image.jpg",
annotation_path="path/to/image.txt",
box_format=BoxFormat.yolo
)
print(record)
Upload an entire dataset folder
import epigos
client = epigos.Epigos("api_key")
# load project
project = client.project("project_id")
# upload COCO annotation dataset
records = project.upload_coco_dataset(
images_directory="path/to/dataset/train/images",
annotations_path="path/to/dataset/train/coco.json",
)
print(tuple(records))
# upload Pascal VOC annotation dataset
records = project.upload_pascal_voc_dataset(
images_directory="path/to/dataset/train/images",
annotations_directory="path/to/dataset/train/labels",
)
print(tuple(records))
# upload YOLO annotation dataset
records = project.upload_yolo_dataset(
images_directory="path/to/dataset/train/images",
annotations_directory="path/to/dataset/train/labels",
data_yaml_path="path/to/dataset/data.yaml",
)
print(tuple(records))
Prediction:
Make predictions with any of the models deployed in your workspace using the Model ID
.
Classification
import epigos
client = epigos.Epigos("api_key")
# load classification model
model = client.classification("model_id")
# make predictions
results = model.predict("path/to/your/image.jpg")
print(results.dict())
Object detection
import epigos
client = epigos.Epigos("api_key")
# load object detection model
model = client.object_detection("model_id")
# make predictions
results = model.detect("path/to/your/image.jpg")
print(results.dict())
# visualize detections
results.show()
Contributing
If you want to extend our Python library or if you find a bug, please open a PR!
Also be sure to test your code with the make
command at the root level directory.
Run tests:
make test
Commit message guidelines
It’s important to write sensible commit messages to help the team move faster.
Please follow the commit guidelines
Versioning
This project uses Semantic Versioning.
Publishing
This project is published on PyPi
License
This library is released under the MIT License.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file epigos-2.1.0.tar.gz
.
File metadata
- Download URL: epigos-2.1.0.tar.gz
- Upload date:
- Size: 17.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4d044fa51d455150734c3153d71dfd1f3399ecb48c9d1b0f9bc2333bbce59600 |
|
MD5 | ff94f723a6a86e02c2445a3efe86fa3f |
|
BLAKE2b-256 | 48bc56e3b1874dfc4dfdb0ab312ca1d7b020cc103cbe81bbb03c368f8dd0ac8d |
File details
Details for the file epigos-2.1.0-py3-none-any.whl
.
File metadata
- Download URL: epigos-2.1.0-py3-none-any.whl
- Upload date:
- Size: 21.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1018-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4f0f6891f331e669e3f2c0393a9c11208900e3e4768159cfc1c28debe0c8baf5 |
|
MD5 | 47777a372437b461facc0d38b6eb1f6c |
|
BLAKE2b-256 | e7b8cce350920651f0fcc58fbbb600f32f841b27b923055aaf819fc76d0d9f0d |