Skip to main content

Epigos AI Python SDK

Project description

Epigos Python

Tests

codecov

Epigos provides an end-to-end platform to annotate data, train computer vision AI models, deploy them seamlessly and host the models via API's.

For more details, visit epigos.ai.

The Epigos Python Package is a python wrapper around the core Epigos AI web application and REST API.

Installation

To install this package, please use Python 3.9 or higher.

To add epigos to your project simply install with pip:

pip install epigos

Or with poetry

poetry add epigos

Getting Started

To make your first API call, you will need to signup at epigos.ai and create an API key for your workspace. Please contact our sales team for a demo.

Initialization:

import epigos

client = epigos.Epigos("api_key")

Project:

Manage project and upload dataset into your project using the Project ID.

Upload an image with annotation

import epigos
from epigos.typings import BoxFormat

client = epigos.Epigos("api_key")

# load project
project = client.project("project_id")

# upload image with Pascal VOC annotation
record = project.upload(
    "path/to/image.jpg",
    annotation_path="path/to/image.xml",
    box_format=BoxFormat.pascal_voc
)
print(record)

# upload image with COCO annotation
record = project.upload(
    "path/to/image.jpg",
    annotation_path="path/to/coco.json",
    box_format=BoxFormat.coco
)
print(record)

# upload image with YOLO annotation
record = project.upload(
    "path/to/image.jpg",
    annotation_path="path/to/image.txt",
    box_format=BoxFormat.yolo
)
print(record)

Upload an entire dataset folder

import epigos

client = epigos.Epigos("api_key")

# load project
project = client.project("project_id")

# upload COCO annotation dataset
records = project.upload_coco_dataset(
    images_directory="path/to/dataset/train/images",
    annotations_path="path/to/dataset/train/coco.json",
)
print(tuple(records))

# upload Pascal VOC annotation dataset
records = project.upload_pascal_voc_dataset(
    images_directory="path/to/dataset/train/images",
    annotations_directory="path/to/dataset/train/labels",
)
print(tuple(records))

# upload YOLO annotation dataset
records = project.upload_yolo_dataset(
    images_directory="path/to/dataset/train/images",
    annotations_directory="path/to/dataset/train/labels",
    data_yaml_path="path/to/dataset/data.yaml",
)
print(tuple(records))

Prediction:

Make predictions with any of the models deployed in your workspace using the Model ID.

Classification

import epigos

client = epigos.Epigos("api_key")

# load classification model
model = client.classification("model_id")

# make predictions
results = model.predict("path/to/your/image.jpg")
print(results.dict())

Object detection

import epigos

client = epigos.Epigos("api_key")

# load object detection model
model = client.object_detection("model_id")

# make predictions
results = model.detect("path/to/your/image.jpg")
print(results.dict())
# visualize detections
results.show()

Contributing

If you want to extend our Python library or if you find a bug, please open a PR!

Also be sure to test your code with the make command at the root level directory.

Run tests:

make test

Commit message guidelines

It’s important to write sensible commit messages to help the team move faster.

Please follow the commit guidelines

Versioning

This project uses Semantic Versioning.

Publishing

This project is published on PyPi

License

This library is released under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

epigos-2.1.0.tar.gz (17.3 kB view details)

Uploaded Source

Built Distribution

epigos-2.1.0-py3-none-any.whl (21.7 kB view details)

Uploaded Python 3

File details

Details for the file epigos-2.1.0.tar.gz.

File metadata

  • Download URL: epigos-2.1.0.tar.gz
  • Upload date:
  • Size: 17.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1018-azure

File hashes

Hashes for epigos-2.1.0.tar.gz
Algorithm Hash digest
SHA256 4d044fa51d455150734c3153d71dfd1f3399ecb48c9d1b0f9bc2333bbce59600
MD5 ff94f723a6a86e02c2445a3efe86fa3f
BLAKE2b-256 48bc56e3b1874dfc4dfdb0ab312ca1d7b020cc103cbe81bbb03c368f8dd0ac8d

See more details on using hashes here.

File details

Details for the file epigos-2.1.0-py3-none-any.whl.

File metadata

  • Download URL: epigos-2.1.0-py3-none-any.whl
  • Upload date:
  • Size: 21.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1018-azure

File hashes

Hashes for epigos-2.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4f0f6891f331e669e3f2c0393a9c11208900e3e4768159cfc1c28debe0c8baf5
MD5 47777a372437b461facc0d38b6eb1f6c
BLAKE2b-256 e7b8cce350920651f0fcc58fbbb600f32f841b27b923055aaf819fc76d0d9f0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page