Atomspheric ionization from auroral particle precipitation
Project description
PyEPPAurora
Atmospheric ionization from particle precipitation
Bundles some of the parametrizations for middle and upper atmospheric ionization and recombination rates for precipitating auroral and radiation-belt electrons as well as protons. Includes also some recombination rate parametrizations to convert the ionization rates to electron densities in the upper atmosphere. See References for a list of included parametrizations.
:warning: This package is in beta stage, that is, it works for the most part and the interface should not change (much) in future versions.
Documentation is available at https://pyeppaurora.readthedocs.io.
Install
Requirements
numpy
- requiredscipy
- required for 2-D interpolationh5netcdf
- optional for the empirical models, install witheppaurora[models]
xarray
- optional for the empirical models, install witheppaurora[models]
pytest
- optional, for testing
eppaurora
An installable pip
package called eppaurora
is available from the
main package repository, it can be installed with:
$ pip install eppaurora
The latest development version can be installed
with pip
directly from github
(see https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support
and https://pip.pypa.io/en/stable/reference/pip_install/#git):
$ pip install [-e] git+https://github.com/st-bender/pyeppaurora.git
The other option is to use a local clone:
$ git clone https://github.com/st-bender/pyeppaurora.git
$ cd pyeppaurora
and then using pip
(optionally using -e
, see
https://pip.pypa.io/en/stable/reference/pip_install/#install-editable):
$ pip install [-e] .
or using setup.py
:
$ python setup.py install
Optionally, test the correct function of the module with
$ py.test [-v]
or even including the doctests in this document:
$ py.test [-v] --doctest-glob='*.md'
Usage
The python module itself is named eppaurora
and is imported as usual.
All functions should be numpy
-compatible and work with scalars
and appropriately shaped arrays.
Energetic particle input in the atmosphere
This module include various parametrizations that describe the energy dissipation of electrons and protons entering the middle and upper atmosphere (see References below). The functions are correspondingly named
rr1987()
for the parametrization by Roble and Ridley, 1987,fang2008()
for the parametrization described in Fang et al., 2008,fang2010()
for the parametrization described in Fang et al., 2010, andfang2013()
for the proton parametrization by Fang et al., 2013
For example, they are called like this:
>>> import eppaurora as aur
>>> ediss = aur.rr1987(1., 1., 8e5, 5e-10)
>>> ediss
3.3693621076457477e-10
>>> import numpy as np
>>> energies = np.logspace(-1, 2, 4)
>>> fluxes = np.ones_like(energies)
>>> # ca. 100, 150, 200 km
>>> scale_heights = np.array([6e5, 27e5, 40e5])
>>> rhos = np.array([5e-10, 1.7e-12, 2.6e-13])
>>> # energy dissipation "profiles"
>>> # broadcast to the right shape
>>> ediss_prof = aur.fang2008(
... energies[None, :], fluxes[None, :],
... scale_heights[:, None], rhos[:, None]
... )
>>> ediss_prof
array([[1.37708081e-49, 3.04153876e-09, 4.44256875e-07, 2.52699970e-08],
[1.60060833e-09, 8.63248169e-08, 3.64564419e-09, 1.62591310e-10],
[5.19369952e-08, 2.34089350e-08, 5.17379303e-10, 3.19504690e-11]])
All functions need additional input for the background atmosphere,
the scale height and the mass density as described in the listed publications.
These can be obtained, for example, from the nrlmsise00
module
https://github.com/st-bender/pynrlmsise00.
Profiles can then be calculated by passing the respective scale height
and density profiles in addition to the energy and flux.
fang1020()
and fang2013()
are for mono-energetic particles and to
obtain a realistic description, the results should be integrated
over the respective energy spectrum.
For this there are spectra functions available for Gaussian, Maxwellian,
and power-law distribution.
Recombination rates
Some atmospheric recombination rates $\alpha$ are available within
eppaurora.recombination
to convert the ionization rates $q$
to electron densities $n_e$ via $q = \alpha n_e^2$.
The recombination rates are parametrized according to altitude,
see References.
Conductivity and conductance
Estimators for the Hall and Pedersen conductivity and conductance
are available via the eppaurora.conductivity
module.
It contains the approximate solution "Robinson formula" for the conductances,
and the functions for the conductivities that need the electron density
and a model for the magnetic field,
see References.
For example the "Robinson" conductances for an average energy en_avg
and flux flx
can be obtained by calling SigmaH_robinson1987(<en_avg>, <flx>)
:
and SigmaP_robinson1987(<en_avg>, <flx>)
:
>>> import eppaurora as aur
>>> aur.SigmaH_robinson1987(10.0, 1.0)
10.985365619753862
>>> aur.SigmaP_robinson1987(10.0, 1.0)
3.4482758620689653
Empirical ionization rate models
This package provides the coefficients and evaluation function
for the SSUSI-derived ionization rate model.
It is imported via eppaurora.models
and the coefficients are
available through ssusiq2023_coeffs()
.
The model itself can be evaluated with ssusiq2023()
for a certain geomagnetic latitude (gmlat),
magnetic local time (mlt), and altitude by providing the space-weather
coefficients of Kp, PC, Ap, and the 81-day averaged F10.7 fluxes as inputs:
ssusiq2023(<gmlat>, <mlt>, <altitude>, [<list of index values>])
.
Note that this returns the natural logarithm of the ionization rate,
normalized to 1 cm⁻³ s⁻¹.
Instead of a list or numpy
-array, an xarray.DataArray
can be used for
the indices which will promote the coordinates to the result,
such as an extra time dimension.
>>> from eppaurora.models import ssusiq2023
>>> ssusiq2023(65.0, 3.0, 100.0, [4.0, 10.0, 100.0, 157.0]) # doctest: +SKIP
<xarray.DataArray 'log_q' (dim_0: 1)>
array([18.80679417])
Coordinates:
altitude float32 100.0
latitude float32 66.6
mlt float32 3.0
Dimensions without coordinates: dim_0
Attributes:
long_name: natural logarithm of ionization rate
units: log(cm-3 s-1)
Various options to use different coefficients or to interpolate
to a finer grid exist, check the docstring of ssusiq2023()
.
The geomagnetic indices can be obtained, for example,
from the spaceweather
module
https://github.com/st-bender/pyspaceweather.
Other
Basic class and method documentation is accessible via pydoc
:
$ pydoc eppaurora
$ pydoc eppaurora.brems
$ pydoc eppaurora.conductivity
$ pydoc eppaurora.electrons
$ pydoc eppaurora.protons
$ pydoc eppaurora.recombination
$ pydoc eppaurora.models.ssusiq2023
References
Electron ionization
[1]: Roble and Ridley, Ann. Geophys., 5A(6), 369--382, 1987
[2]: Fang et al., J. Geophys. Res. Space Phys., 113, A09311, 2008,
doi: 10.1029/2008JA013384
[3]: Fang et al., Geophys. Res. Lett., 37, L22106, 2010,
doi: 10.1029/2010GL045406
Ionization by secondary electrons from bremsstrahlung
[4]: Berger et al., Journal of Atmospheric and Terrestrial Physics, Volume 36, Issue 4, 591--617, April 1974, doi: 10.1016/0021-9169(74)90085-3
Proton ionization
[5]: Fang et al., J. Geophys. Res. Space Phys., 118, 5369--5378, 2013, doi: 10.1002/jgra.50484
Recombination rates
[6]: Vickrey et al., J. Geophys. Res. Space Phys., 87, A7, 5184--5196,
doi: 10.1029/ja087ia07p05184
[7]: Gledhill, Radio Sci., 21, 3, 399-408,
doi: 10.1029/rs021i003p00399
[8]: https://ssusi.jhuapl.edu/data_algorithms
Conductivity and conductance
[9]: Brekke et al., J. Geophys. Res., 79(25), 3773--3790, Sept. 1974,
doi: 10.1029/JA079i025p03773
[10]: Vickrey et al., J. Geophys. Res., 86(A1), 65--75, Jan. 1981,
doi: 10.1029/JA086iA01p00065
[11]: Robinson et al., J. Geophys. Res. Space Phys., 92(A3), 2565--2569, Mar. 1987,
doi: 10.1029/JA092iA03p02565
License
This python interface is free software: you can redistribute it or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2 (GPLv2), see local copy or online version.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file eppaurora-0.3.1.tar.gz
.
File metadata
- Download URL: eppaurora-0.3.1.tar.gz
- Upload date:
- Size: 186.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fc667f3c702478c9f5cc5384f18855cacf3d38ab913a21ac6c6922e421adb8b2 |
|
MD5 | 3da213350557f72aeb52e26d085aa3e7 |
|
BLAKE2b-256 | 5ddc1ad9b022251dd3e18c8a011ca700df03fa99bebd4b0b1ff51ed83f5405f5 |
File details
Details for the file eppaurora-0.3.1-py2.py3-none-any.whl
.
File metadata
- Download URL: eppaurora-0.3.1-py2.py3-none-any.whl
- Upload date:
- Size: 180.1 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e5cb8e865e08790e68743e77be609ddaf6570b3cdee3d5676748e9ddb4b7e1a7 |
|
MD5 | 484ac1daa559d9b4f5def63829e43e3b |
|
BLAKE2b-256 | 9660f05d170110d4da7774dba79fcbf7343fb86dc3dd4de170455aec8cc73135 |