Skip to main content

Building control trought DRL.

Project description

eprllib: EnergyPlus as a Markov Decission Process (MDP) environment for Deep Reinforcement Learning (DRL) in RLlib

This repository provides a set of methods to establish the computational loop of EnergyPlus within a Markov Decision Process (MDP), treating it as a multi-agent environment compatible with RLlib. The main goal is to offer a simple configuration of EnergyPlus as a standard environment for experimentation with Deep Reinforcement Learning.

Installation

To install EnergyPlusRL, simply use pip:

pip install eprllib

Key Features

  • Integration of EnergyPlus and RLlib: This package facilitates setting up a Reinforcement Learning environment using EnergyPlus as the base, allowing for experimentation with energy control policies in buildings.
  • Simplified Configuration: To use this environment, you simply need to provide a configuration in the form of a dictionary that includes state variables, metrics, actuators (which will also serve as agents in the environment), and other optional features.
  • Flexibility and Compatibility: EnergyPlusRL easily integrates with RLlib, a popular framework for Reinforcement Learning, enabling smooth setup and training of control policies for actionable elements in buildings.

Usage

  1. Import the package into your Python script.
  2. Define your environment configuration in a dictionary, specifying state variables, metrics, actuators, and other relevant features as needed. (See Documentation section to know all the parameters).
  3. Configure RLlib for training control policies using the EnergyPlusRL environment.
  4. Execute the training of your Reinforcement Learning model and evaluate the results obtained.

Example configuration

import ray
from ray.tune import register_env
from ray import tune, air
from ray.rllib.algorithms.dqn.dqn import DQNConfig
from ray.rllib.policy.policy import PolicySpec
import gymnasium as gym
from eprllib.env.multiagent.marl_ep_gym_env import EnergyPlusEnv_v0

env_config={
    # === ENERGYPLUS OPTIONS === #
    'epjson': '/content/prot_3_ceiling.epJSON',
    "epw_training": np.random.choice(["/content/GEF_Lujan_de_cuyo-hour-H1.epw","/content/GEF_Lujan_de_cuyo-hour-H2.epw","/content/GEF_Lujan_de_cuyo-hour-H3.epw"]),
    "epw": "/content/GEF_Lujan_de_cuyo-hour-H4.epw",
    # Configure the output directory for the EnergyPlus simulation.
    'output': '/content/output',
    # For dubugging is better to print in the terminal the outputs of the EnergyPlus simulation process.
    'ep_terminal_output': False,

    # === EXPERIMENT OPTIONS === #
    # For evaluation process 'is_test=True' and for trainig False.
    'is_test': False,

    # === ENVIRONMENT OPTIONS === #
    # action space for simple agent case
    'action_space': gym.spaces.Discrete(2),
    # observation space for simple agent case
    # This is equal to the the sume of:
    #   + ep_variables
    #   + ep_meters
    #   + ep_actuators
    #   + weather_prob_days*144
    #   - no_observable_variables
    #   + 1 (agent_indicator)
    #   + 6 ('day_of_the_week','is_raining','sun_is_up','hora','simulation_day','rad')
    'observation_space': gym.spaces.Box(float("-inf"), float("inf"), (307,)),
    'reward_function': eprllib.tools.rewards.reward_function_T3,
    "ep_variables":{
        "To": ("Site Outdoor Air Drybulb Temperature", "Environment"),
        "Ti": ("Zone Mean Air Temperature", "Thermal Zone: Living"),
        "v": ("Site Wind Speed", "Environment"),
        "d": ("Site Wind Direction", "Environment"),
        "RHo": ("Site Outdoor Air Relative Humidity", "Environment"),
        "RHi": ("Zone Air Relative Humidity", "Thermal Zone: Living"),
        "pres": ("Site Outdoor Air Barometric Pressure", "Environment"),
        "occupancy": ("Zone People Occupant Count", "Thermal Zone: Living"),
        "ppd": ("Zone Thermal Comfort Fanger Model PPD", "Living Occupancy")
    },
    "ep_meters": {
        "electricity": "Electricity:Zone:THERMAL ZONE: LIVING",
        "gas": "NaturalGas:Zone:THERMAL ZONE: LIVING",
    },
    "ep_actuators": {
        "opening_window_1": ("AirFlow Network Window/Door Opening", "Venting Opening Factor", "living_NW_window"),
        "opening_window_2": ("AirFlow Network Window/Door Opening", "Venting Opening Factor", "living_E_window"),
    },
    "infos_variables": ["ppd", "occupancy", "Ti"],
    "no_observable_variables": ["ppd"],

    # === OPTIONAL === #
    "timeout": 10,
    "T_confort": 23.5,
    "weather_prob_days": 2
}

def policy_mapping_fn(agent_id, episode, worker, **kwargs):
    return "shared_policy"

# To register the custom environment.
ray.init()
register_env(name="EPEnv", env_creator=lambda args: EnergyPlusEnv_v0(args))

algo = DQNConfig().training(
    gamma = 0.99,
    lr = 0.01,
).environment(
    env="EPEnv",
    env_config=env_config,
).framework(
    framework = 'torch',
).rollouts(
    num_rollout_workers = 0,
).experimental(
    _enable_new_api_stack = False,
).multi_agent(
    policies = {
        'shared_policy': PolicySpec(),
    },
    policy_mapping_fn = policy_mapping_fn,
)

tune.Tuner(
    algorithm,
    tune_config=tune.TuneConfig(
        mode="max",
        metric="episode_reward_mean",
    ),
    run_config=air.RunConfig(
        stop={"episodes_total": 800},
    ),
    param_space=algo.to_dict(),
).fit()

Contribution

Contributions are welcome! If you wish to improve this project or add new features, feel free to submit a pull request.

Licency

MIT License

Copyright (c) 2024 hermmanhender

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

eprllib-1.2.1.tar.gz (571.0 kB view details)

Uploaded Source

Built Distribution

eprllib-1.2.1-py3-none-any.whl (593.9 kB view details)

Uploaded Python 3

File details

Details for the file eprllib-1.2.1.tar.gz.

File metadata

  • Download URL: eprllib-1.2.1.tar.gz
  • Upload date:
  • Size: 571.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.7

File hashes

Hashes for eprllib-1.2.1.tar.gz
Algorithm Hash digest
SHA256 0163dd15997899c8987a4c972ffe04774f8965815a19e6b9e94b782df170bb17
MD5 046109d0bf8a378c1054ae88c6dec49a
BLAKE2b-256 542a4ee6cade9e0914eb18a87cd229c3c07ba41c69ca8bab7584c863b99ec05b

See more details on using hashes here.

File details

Details for the file eprllib-1.2.1-py3-none-any.whl.

File metadata

  • Download URL: eprllib-1.2.1-py3-none-any.whl
  • Upload date:
  • Size: 593.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.7

File hashes

Hashes for eprllib-1.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d44979d249080febe0ab44b9bc350ec2f7891431eb4a889dc19f2521a6f56bf4
MD5 ebb5e9b92a50253db3dc1593fba947f5
BLAKE2b-256 34bf611e09e3fde03c5eb497b31ed0678535f76a8327f6db60837bd0adef6e9e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page