Skip to main content

Python computational experiment management

Project description

https://badge.fury.io/py/epyc.svg https://readthedocs.org/projects/epyc/badge/?version=latest https://api.travis-ci.org/simoninireland/epyc.svg?branch=master https://coveralls.io/repos/github/simoninireland/epyc/badge.svg?branch=master

Overview

epyc is a Python module for controlling a long-running series of computational experiments, as is often found when writing simulations of complex networks and other such domains. There is often a need to perform a computation across a multi-dimensional parameter space, varying the parameters, performing and aggregating multiple repetitions, and wrangling results for analysis and presentation. Often the experiments being performed are on such a scale as to require the use of a computing cluster to perform multiple experiments simultaneously.

Managing all these tasks is complicated, so epyc tries to automate it. It provides a way to define a “laboratory” performing a collection of “experiments” whose parameters and results are collected togethr into “result sets” and recorded in a “lab notebook” for later retrieval. Laboratories can be sequential (for a single machine) or parallel (to use a multicore or cluster of machines); lab notebooks can be persistent to allow experiments to be fired-off and their results retrieved later – handy if you use a laptop. Notebooks store all the data and metadata in a portable format to improve the reproducibility of computational experiments.

epyc also includes a small number of “experiment combinators” that separate the logic of a single experiment from the logic of performing multiple repetitions and other structuring tasks. This means that any experiment can be repeated and statistically summarised, for example.

Installation

epyc works with Python 3.6 and above, and with PyPy3. You can install it directly from PyPi using pip:

pip install epyc

The master distribution of epyc is hosted on GitHub. To obtain a copy, just clone the repo:

git clone git@github.com:simoninireland/epyc.git
cd epyc
python setup.py install

Documentation

API documentation for epyc can be found on ReadTheDocs <https://epyc.readthedocs.io/en/latest/>. You can also read a Jupyter notebook describing several epyc use cases online at <https://github.com/simoninireland/epyc/blob/master/doc/epyc.ipynb>.

Author and license

Copyright (c) 2016-2020, Simon Dobson <simon.dobson@computer.org>

Licensed under the GNU General Public Licence v.2.0 <https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html>.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

epyc-1.2.1.tar.gz (54.7 kB view details)

Uploaded Source

File details

Details for the file epyc-1.2.1.tar.gz.

File metadata

  • Download URL: epyc-1.2.1.tar.gz
  • Upload date:
  • Size: 54.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.8.6

File hashes

Hashes for epyc-1.2.1.tar.gz
Algorithm Hash digest
SHA256 f93ca418ec13a3ffb08e08e77042f44e2f457ee4bcfd7cb5bc1f69978d72eb6c
MD5 0606cdefc78e413b70f88674b1f077ad
BLAKE2b-256 9d1945718e169514266a7f7c540272fc1ca85755de78de8cd92043129d322116

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page