Python Fuzzy Matchers

Project description

tl;dr Equals is a stricter version of Mock.Any.

Equals allows you to assert certain equality constraints between python objects during testing. There are times where we don’t want to assert absolute equality, e.g. we need to ensure two lists have the same elements, but don’t care about order. This was designed specifically for usage with Mock and doubles.

Usage with Mock:

test_object = Mock()
test_object.method({'bob': 'barker'})
test_object.method.assert_called_with(any_dict)

Usage with doubles:

test_object = TestClass()
expect(test_object).method.with_args(any_string.containing('bob'))

test_object.method('bob barker')

strings:

from equals import any_string

any_string.containing('abc') == '123 abc 456'
any_string.starting_with('abc') == 'abcdef'
any_string.ending_with('abc') == '123abc'
any_string.matching('^abc\$') == 'abc'

numbers:

from equals import any_number

any_number.less_than(5) == 4
any_number.less_than_or_equal_to(5) == 5
any_number.greater_than(4) == 5
any_number.greater_than_or_equal_to(5) == 5
any_number.between(1, 3) == 2

dictionaries:

from equals import any_dict

any_dict.containing(1, 2) == {1: 2, 2:3, 4:5}
any_dict.containing(foo='bar') == {
'foo': 'bar',
'bob': 'barker'
}
any_dict.not_containing(1, foo=5) == {'foo':3, 4:5}

iterators:

from equals import any_iterable

any_iterable.containing(1, 2, 3) == [1, 2, 3, 4, 5]
any_iterable.containing_only(1, 2, 3) == [2, 3, 1]
any_iterable.not_containing(1, 2) == [3, 4]
any_iterable.with_length(2) == [3, 4]

objects:

from equals import anything

anything == None
anything == True
anything == {1: 1}
anything_true == 'dd'
anything_false == ''

instance_of(dict) == {}
anything.with_attrs(foo='bar', bob='barker') == Dummy('bar', 'barker')
instance_of(Dummy).with_attrs(foo='bar', bob='barker') == Dummy('bar', 'barker')

Installation:

>> pip install equals

Development:

>> git clone https://github.com/toddsifleet/equals
>> cd equals
>> make bootstrap
>> make

Project details 1.0.0 0.0.25

This version 0.0.24 0.0.23 0.0.22 0.0.21 0.0.2 0.0.1