Skip to main content

Elegant easy-to-use neural networks in JAX.

Project description

Equinox

Equinox is your one-stop JAX library, for everything you need that isn't already in core JAX:

  • neural networks (or more generally any model), with easy-to-use PyTorch-like syntax;
  • filtered APIs for transformations;
  • useful PyTree manipulation routines;
  • advanced features like runtime errors;

and best of all, Equinox isn't a framework: everything you write in Equinox is compatible with anything else in JAX or the ecosystem.

If you're completely new to JAX, then start with this CNN on MNIST example.

Coming from Flax or Haiku? The main difference is that Equinox (a) offers a lot of advanced features not found in these libraries, like PyTree manipulation or runtime errors; (b) has a simpler way of building models: they're just PyTrees, so they can pass across JIT/grad/etc. boundaries smoothly.

Installation

pip install equinox

Requires Python 3.9+ and JAX 0.4.13+.

Documentation

Available at https://docs.kidger.site/equinox.

Quick example

Models are defined using PyTorch-like syntax:

import equinox as eqx
import jax

class Linear(eqx.Module):
    weight: jax.Array
    bias: jax.Array

    def __init__(self, in_size, out_size, key):
        wkey, bkey = jax.random.split(key)
        self.weight = jax.random.normal(wkey, (out_size, in_size))
        self.bias = jax.random.normal(bkey, (out_size,))

    def __call__(self, x):
        return self.weight @ x + self.bias

and fully compatible with normal JAX operations:

@jax.jit
@jax.grad
def loss_fn(model, x, y):
    pred_y = jax.vmap(model)(x)
    return jax.numpy.mean((y - pred_y) ** 2)

batch_size, in_size, out_size = 32, 2, 3
model = Linear(in_size, out_size, key=jax.random.PRNGKey(0))
x = jax.numpy.zeros((batch_size, in_size))
y = jax.numpy.zeros((batch_size, out_size))
grads = loss_fn(model, x, y)

Finally, there's no magic behind the scenes. All eqx.Module does is register your class as a PyTree. From that point onwards, JAX already knows how to work with PyTrees.

Citation

If you found this library to be useful in academic work, then please cite: (arXiv link)

@article{kidger2021equinox,
    author={Patrick Kidger and Cristian Garcia},
    title={{E}quinox: neural networks in {JAX} via callable {P}y{T}rees and filtered transformations},
    year={2021},
    journal={Differentiable Programming workshop at Neural Information Processing Systems 2021}
}

(Also consider starring the project on GitHub.)

See also: other libraries in the JAX ecosystem

Always useful
jaxtyping: type annotations for shape/dtype of arrays.

Deep learning
Optax: first-order gradient (SGD, Adam, ...) optimisers.
Orbax: checkpointing (async/multi-host/multi-device).
Levanter: scalable+reliable training of foundation models (e.g. LLMs).

Scientific computing
Diffrax: numerical differential equation solvers.
Optimistix: root finding, minimisation, fixed points, and least squares.
Lineax: linear solvers.
BlackJAX: probabilistic+Bayesian sampling.
sympy2jax: SymPy<->JAX conversion; train symbolic expressions via gradient descent.
PySR: symbolic regression. (Non-JAX honourable mention!)

Awesome JAX
Awesome JAX: a longer list of other JAX projects.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

equinox-0.11.6.tar.gz (139.3 kB view details)

Uploaded Source

Built Distribution

equinox-0.11.6-py3-none-any.whl (177.7 kB view details)

Uploaded Python 3

File details

Details for the file equinox-0.11.6.tar.gz.

File metadata

  • Download URL: equinox-0.11.6.tar.gz
  • Upload date:
  • Size: 139.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for equinox-0.11.6.tar.gz
Algorithm Hash digest
SHA256 e237c25e446960ed479f086df240d4dd779bb0917bafc76811d341ccac76b712
MD5 4199345eb5f98f31671b14e5df837d1f
BLAKE2b-256 9e25551cd234d40762862d20d99df4555cc20aba3571d1a5be5e73efdf3749ff

See more details on using hashes here.

File details

Details for the file equinox-0.11.6-py3-none-any.whl.

File metadata

  • Download URL: equinox-0.11.6-py3-none-any.whl
  • Upload date:
  • Size: 177.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for equinox-0.11.6-py3-none-any.whl
Algorithm Hash digest
SHA256 ea1120057a1b907a1cdbaed0ed6ba8e70728ae1fc31e1ddad778af1e18f864c0
MD5 9990a54310b4bbe319a87b57823a5426
BLAKE2b-256 84cba51ab01035c6992d22f1a7fa811d2f610f3fe5ef57eefd84fe52764cf176

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page