Skip to main content

PyTorch-like neural networks in JAX

Project description

Equinox

Equinox is a JAX library based around a simple idea: represent parameterised functions (such as neural networks) as PyTrees.

In doing so:

  • We get a PyTorch-like API...
  • ...that's fully compatible with native JAX transformations...
  • ...with no new concepts you have to learn. (It's all just PyTrees.)

The elegance of Equinox is its selling point in a world that already has Haiku, Flax and so on.

(In other words, why should you care? Because Equinox is really simple to learn, and really simple to use.)

Installation

pip install equinox

Requires Python 3.7+ and JAX 0.2.18+.

Documentation

Available at https://docs.kidger.site/equinox.

Quick example

Models are defined using PyTorch-like syntax:

import equinox as eqx
import jax

class Linear(eqx.Module):
    weight: jax.numpy.ndarray
    bias: jax.numpy.ndarray

    def __init__(self, in_size, out_size, key):
        wkey, bkey = jax.random.split(key)
        self.weight = jax.random.normal(wkey, (out_size, in_size))
        self.bias = jax.random.normal(bkey, (out_size,))

    def __call__(self, x):
        return self.weight @ x + self.bias

and fully compatible with normal JAX operations:

@jax.jit
@jax.grad
def loss_fn(model, x, y):
    pred_y = jax.vmap(model)(x)
    return jax.numpy.mean((y - pred_y) ** 2)

batch_size, in_size, out_size = 32, 2, 3
model = Linear(in_size, out_size, key=jax.random.PRNGKey(0))
x = jax.numpy.zeros((batch_size, in_size))
y = jax.numpy.zeros((batch_size, out_size))
grads = loss_fn(model, x, y)

Finally, there's no magic behind the scenes. All eqx.Module does is register your class as a PyTree. From that point onwards, JAX already knows how to work with PyTrees.

Citation

If you found this library to be useful in academic work, then please cite: (arXiv link)

@article{kidger2021equinox,
    author={Patrick Kidger and Cristian Garcia},
    title={{E}quinox: neural networks in {JAX} via callable {P}y{T}rees and filtered transformations},
    year={2021},
    journal={Differentiable Programming workshop at Neural Information Processing Systems 2021}
}

(Also consider starring the project on GitHub.)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

equinox-0.2.2.tar.gz (30.7 kB view details)

Uploaded Source

Built Distribution

equinox-0.2.2-py3-none-any.whl (36.7 kB view details)

Uploaded Python 3

File details

Details for the file equinox-0.2.2.tar.gz.

File metadata

  • Download URL: equinox-0.2.2.tar.gz
  • Upload date:
  • Size: 30.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for equinox-0.2.2.tar.gz
Algorithm Hash digest
SHA256 7c9b300fa5c5b7491083c29d448ff4964dbc2553efac29a163713ec170e106b8
MD5 81d12cad6e0f1545d90f1eef9ff399e0
BLAKE2b-256 1541457bf7dfeb9f1ef48077a5648b88c344344277af02c0254e83f173ada407

See more details on using hashes here.

File details

Details for the file equinox-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: equinox-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 36.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for equinox-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 da30e16233cff4c56db2e3afe4da3934b132754e2ba8995569d18d266da2cbb2
MD5 bc3c6dd5415f8fbc9f49224441bdd842
BLAKE2b-256 b65b91dae377d2a0e1d2d30df78e04c17a47baa1c5aad332f1ed88c475a82a77

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page