Skip to main content

PyTorch-like neural networks in JAX

Project description

Equinox

Equinox is a JAX library based around a simple idea: represent parameterised functions (such as neural networks) as PyTrees.

In doing so:

  • We get a PyTorch-like API...
  • ...that's fully compatible with native JAX transformations...
  • ...with no new concepts you have to learn. (It's all just PyTrees.)

The elegance of Equinox is its selling point in a world that already has Haiku, Flax and so on.

(In other words, why should you care? Because Equinox is really simple to learn, and really simple to use.)

Installation

pip install equinox

Requires Python 3.7+ and JAX 0.3.4+.

Documentation

Available at https://docs.kidger.site/equinox.

Quick example

Models are defined using PyTorch-like syntax:

import equinox as eqx
import jax

class Linear(eqx.Module):
    weight: jax.numpy.ndarray
    bias: jax.numpy.ndarray

    def __init__(self, in_size, out_size, key):
        wkey, bkey = jax.random.split(key)
        self.weight = jax.random.normal(wkey, (out_size, in_size))
        self.bias = jax.random.normal(bkey, (out_size,))

    def __call__(self, x):
        return self.weight @ x + self.bias

and fully compatible with normal JAX operations:

@jax.jit
@jax.grad
def loss_fn(model, x, y):
    pred_y = jax.vmap(model)(x)
    return jax.numpy.mean((y - pred_y) ** 2)

batch_size, in_size, out_size = 32, 2, 3
model = Linear(in_size, out_size, key=jax.random.PRNGKey(0))
x = jax.numpy.zeros((batch_size, in_size))
y = jax.numpy.zeros((batch_size, out_size))
grads = loss_fn(model, x, y)

Finally, there's no magic behind the scenes. All eqx.Module does is register your class as a PyTree. From that point onwards, JAX already knows how to work with PyTrees.

Citation

If you found this library to be useful in academic work, then please cite: (arXiv link)

@article{kidger2021equinox,
    author={Patrick Kidger and Cristian Garcia},
    title={{E}quinox: neural networks in {JAX} via callable {P}y{T}rees and filtered transformations},
    year={2021},
    journal={Differentiable Programming workshop at Neural Information Processing Systems 2021}
}

(Also consider starring the project on GitHub.)

See also

Numerical differential equation solvers: Diffrax.

Type annotations and runtime checking for PyTrees and shape/dtype of JAX arrays: jaxtyping.

SymPy<->JAX conversion; train symbolic expressions via gradient descent: sympy2jax.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

equinox-0.6.0.tar.gz (55.5 kB view details)

Uploaded Source

Built Distribution

equinox-0.6.0-py3-none-any.whl (66.6 kB view details)

Uploaded Python 3

File details

Details for the file equinox-0.6.0.tar.gz.

File metadata

  • Download URL: equinox-0.6.0.tar.gz
  • Upload date:
  • Size: 55.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for equinox-0.6.0.tar.gz
Algorithm Hash digest
SHA256 cfcf3c43a93988aefeac4e28a24855e535b2d630c0abc376b8b1f0f444c929ee
MD5 b7804471df8cea825fafc2fbbad118a8
BLAKE2b-256 c6819bf838a67959a9f27319dc128e11b59e05f9c52fe5795a643c94b8d9a9a1

See more details on using hashes here.

File details

Details for the file equinox-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: equinox-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 66.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for equinox-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 848aa720637803bb82aa34a0c580add056c73ded1242f7992ab9c41fb0c1abf8
MD5 8f17d0b653230df1c6957ed839620abc
BLAKE2b-256 3dff76feaa1acfe594b40083fff6e5f0c713f53d2cbe9144036861fe9b961965

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page