A package for the automatic detection of evoked responses in SPES/CCEP data
Project description
Evoked Response Detection
A python package and docker application for the automatic detection of evoked responses in SPES/CCEP data
Python Usage
- First install ERdetect, in the command-line run:
pip install erdetect
- To run:
- a) With a graphical user interface:
python -m erdetect ~/bids_data ~/output/ --gui
- b) From the commandline:
python -m erdetect ~/bids_data ~/output/ [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
- c) To process a subset directly in a python script:
import erdetect
erdetect.process_subset('/bids_data_root/subj-01/ieeg/sub-01_run-06.edf', '/output_path/')
Docker Usage
To launch an instance of the container and analyse data in BIDS format, in the command-line interface/terminal:
docker run multimodalneuro/erdetect <bids_dir>:/data <output_dir>:/output [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
For example, to run an analysis, type:
docker run -ti --rm \
-v /local_bids_data_root/:/data \
-v /local_output_path/:/output \
multimodalneuro/erdetect /data /output --participant_label 01
Configure detection
From the command-line, a JSON file can be passed using the --config_filepath [JSON_FILEPATH]
parameter to adjust the preprocessing, the evoked response detection and the visualization settings.
An example JSON containing the standard settings looks as follows:
{
"preprocess": {
"high_pass": false,
"line_noise_removal": "off",
"early_re_referencing": {
"enabled": false,
"method": "CAR",
"stim_excl_epoch": [-1.0, 2.0]
}
},
"trials": {
"trial_epoch": [-1.0, 2.0],
"out_of_bounds_handling": "first_last_only",
"baseline_epoch": [-0.5, -0.02],
"baseline_norm": "median",
"concat_bidirectional_pairs": true,
"minimum_stimpair_trials": 5
},
"channels": {
"measured_types": ["ECOG", "SEEG", "DBS"],
"stim_types": ["ECOG", "SEEG", "DBS"]
},
"detection": {
"negative": true,
"positive": false,
"peak_search_epoch": [ 0, 0.5],
"response_search_epoch": [ 0.009, 0.09],
"method": "std_base",
"std_base": {
"baseline_epoch": [-1, -0.1],
"baseline_threshold_factor": 3.4
}
},
"visualization": {
"negative": true,
"positive": false,
"x_axis_epoch": [-0.2, 1],
"blank_stim_epoch": [-0.015, 0.0025],
"generate_electrode_images": true,
"generate_stimpair_images": true,
"generate_matrix_images": true
}
}
Acknowledgements
-
Written by Max van den Boom (Multimodal Neuroimaging Lab, Mayo Clinic, Rochester MN)
-
Local extremum detection method by Dorien van Blooijs & Dora Hermes (2018), with optimized parameters by Jaap van der Aar
-
Dependencies:
- IeegPrep (https://github.com/MultimodalNeuroimagingLab/ieegprep)
- BIDS-validator (https://github.com/bids-standard/bids-validator)
- NumPy
- SciPy
- Matplotlib
-
This project was funded by the National Institute Of Mental Health of the National Institutes of Health Award Number R01MH122258 to Dora Hermes
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file erdetect-2.5.0.tar.gz
.
File metadata
- Download URL: erdetect-2.5.0.tar.gz
- Upload date:
- Size: 66.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f4bbfd43654e26180f105b6247e1aa14f8d3fb2af027bb4a72440bfd82db45de |
|
MD5 | f49d00a36f5a7cd8ec3a3626342530dd |
|
BLAKE2b-256 | d1f954481a88271eb3f1953748abc2fb9908ce6ffb807c8f49175ec7896476a4 |
File details
Details for the file erdetect-2.5.0-py3-none-any.whl
.
File metadata
- Download URL: erdetect-2.5.0-py3-none-any.whl
- Upload date:
- Size: 70.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 188e6c9c9dcef19de7a157ecf416c0ce001f775ab5eea5b757452994c2c99c48 |
|
MD5 | b0a2ccd6988fd0aa65f70518161a9c4b |
|
BLAKE2b-256 | 5ca789bee667764c1f05d5e382022c487e21197154dc17d790f1f8fc9a32cc4d |