Skip to main content

NLP error analysis.

Project description

Errudite

This opensourcing is work-in-progress!

Errudite is an interactive tool for scalable, reproducible, and counterfactual error analysis. Errudite provides an expressive domain-specific language for extracting relevant features of linguistic data, which allows users to visualize data attributes, group relevant instances, and perform counterfactual analysis across all available validation data.

Getting Started

  1. Watch this video demo that contains the highlights of Errudite's functions & use cases
  2. Get set up quickly
  3. Try Errudite's user interface on machine comprehension
  4. Try the tutorials on JupyterLab notebooks
  5. Read the documentation

Citation

If you are interested in this work, please see our ACL 2019 research paper and consider citing our work:

@inproceedings{2019-errudite,
    title = {Errudite: Scalable, Reproducible, and Testable Error Analysis},
    author = {Wu, Tongshuang and Ribeiro, Marco Tulio and Heer, Jeffrey and Weld Daniel S.},
  booktitle={the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019)},
    year = {2019},
    url = {https://homes.cs.washington.edu/~wtshuang/files/acl2019_errudite.pdf},
}

Quick Start

Installation

PIP

Errudite requires Python 3.6.x. The package is avaiable through pip: Just install it in your Python environment and you're good to go!

# create the virtual environment
virtualenv --no-site-packages -p python3.6 venv
# activate venv
source venv/bin/activate
# install errudite
pip install errudite

Install from source

You can also install Errudite by cloning our git repository:

git clone https://github.com/uwdata/errudite

Create a Python 3.6 virtual environment, and install Errudite in editable mode by running:

pip install --editable .

This will make errudite available on your system but it will use the sources from the local clone you made of the source repository.

GUI Server

Errudite has a UI wrapped for Machine Comprehension and Visual Question Answering tasks. The interface integrates all the key analysis functions (e.g., inspecting instance attributes, grouping similar instances, rewriting instances), It also provides exploration support such as visualizing data distributions, suggesting potential queries, and presenting the grouping and rewriting results. While not strictly necessary, it makes their application much more straightforward.

To get a taste of GUI for the machine comprehension task, you should first download a cache folder for preprocessed SQuAD instances, which will help you skip the process of running your own preprocessing:

python -m errudite.download

Commands:
    cache_folder_name
                A folder name. Currently, we allow downloading the following:
                squad-100, squad-10570.
    cache_path  A local path where you want to save the cache folder to.

Then, we need to start the server:

# the model relies on Allennlp, so make sure you install that first.
pip install allennlp==0.8.4
source venv/bin/activate
python -m errudite.server

Commands:
    config_file
                A yaml config file path.

The config file looks like the following (or in config.yml):

task: qa # the task, should be "qa" and "vqa".
cache_path: {cache_path}/{cache_folder_name}/ # the cached folder.
model_metas: # a model.
- name: bidaf
  model_class: bidaf # an implemented model class
  model_path: # a local model file path
  # an online path to an Allennlp model
  model_online_path: https://s3-us-west-2.amazonaws.com/allennlp/models/bidaf-model-2017.09.15-charpad.tar.gz
  description: Pretrained model from Allennlp, for the BiDAF model (QA)
attr_file_name: null # It set, to load previously saved analysis.
group_file_name: null
rewrite_file_name: null

Then visit http://localhost:5000/ in your web browser.

JupyterLab Tutorial

Besides used in a GUI, errudite also serves as a general python package. The tutorial goes through:

  1. Preprocessing the data, and extending Errudite to different tasks & predictors
  2. Creating data attributes and data groups with a domain specific language (or your customized functions).
  3. Creating rewrite rules with the domain specific language (or your customized functions).

To go through the tutorial, do the following steps:

# clone the repo
git clone https://github.com/uwdata/errudite
# initial folder: errudite/
# create the virtual environment
virtualenv --no-site-packages -p python3.6 venv
# activate venv
source venv/bin/activate

# run the default setup script
pip install --editable .

# get to the tutorial folder, and start!
cd tutorials
pip install -r requirements_tutorials.txt
jupyter lab

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

errudite-0.0.3.tar.gz (127.3 kB view details)

Uploaded Source

Built Distribution

errudite-0.0.3-py3-none-any.whl (3.7 MB view details)

Uploaded Python 3

File details

Details for the file errudite-0.0.3.tar.gz.

File metadata

  • Download URL: errudite-0.0.3.tar.gz
  • Upload date:
  • Size: 127.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.5

File hashes

Hashes for errudite-0.0.3.tar.gz
Algorithm Hash digest
SHA256 48c81f2df6af0f33535278dfe7cc854b3d3cc2ee2c96fab963e363586262be1c
MD5 3ef6fe60bf2df9fdecc5cceebf3bfde5
BLAKE2b-256 514173279ed5a3e9eadaa11f536b22ca23a621f5cdd0ce2813b979ce1024a173

See more details on using hashes here.

File details

Details for the file errudite-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: errudite-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 3.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.5

File hashes

Hashes for errudite-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 8a4d5274ce01bf35633f21c3a71831d4d39539de62ddb0942c5da461192a6705
MD5 792a3553a8d2718f8a803d5afe355fef
BLAKE2b-256 38bbf3277869abb80aa5ae258e210bf7454526872f9739a73bdab35249468c2a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page